Fenghua Technology Servo Precision Reducer Products

Fenghua Transmission is committed to offering you quality products
Specializing in R & D and production of various precision
planetary gear transmission products
Free service hotline: 400-8040-668
Click www.3fgearbox.com for CAD, 3D, 2D files of products

Technology (Shanghai) Co.,Ltd

Technology (jiangsu) Co., Ltd

Jiangsu Fenghua Transmission Technology Co.,Ltd.

Add.: No 599, Fengxing Road, Kunshan city, Suzhou city Tel.: 0512-50167005 / 181 1744 4109

Email: Info@3fgearbox.com Website: www.3fgearbox.com

Guangdong Office

Add.: No.158 Zhen'an East Road, Chang'an Town,
Dongguan City, Guangdong Province
Tel.: 0755-23344659 Fax: 0755-23342973
Mob.: 18928431587/18928431697/18038144705

North China Office

Add.: Room 2004, Unit 1, Building 3, Lego International Building, Huayuan East Road, Lixia District, Jinan City Tel.: 0531-86956362 Fax: 0531-86956362

Mob.: 15689738188

Zhejiang Office

Add.: Room 413, Zhongqing Building, No. 75 Kangqiao Road, Gongshu District, Hangzhou, Zhejiang Province Tel.: 0571-86699905 Fax: 0571-86699905

Operation center

Fenghua Transmission Technology (Shanghai) Co.,Ltd.

Add.: No.4777 Minfeng Industrial Park, Jiasong North

Road, Jiading District, Shanghai

Tel.:021-39948832/39948836 13701956498

International Sales Department

Sales Manager: Ms.Jetty

+86 181 1744 4109(whatsapp/wechat/skype)

info@3fgearbox.com

Tianjin Office

Add.: No. 118, Inc. 1, Building 6, Block 2, Hardware City, Miyun Road, Nankai District, Tianjin

Tel.: 022-87809695 Fax: 022-87809695

Mob.: 15620987332

Fujian Office

Add.: No.50 Tianying Yiwo, Jimei North Industrial Zone, Xiamen City, Fujian Province

Tel.: 0592-6066458 Fax: 0592-6066432

Stepper/servo motor driving (for robot industry)

Harmonic Reducer

High cost-effective/perfectly match and replace the sizes of Japanes harmonic reducers

Jiangsu Fenghua Transmission Technology Co., Ltd.

FAMED Company Introduction

Jiangsu Fenghua Transmission Technology Co., Ltd. is developed from a factory which professionally manufactures the gears. All staffs of factory and R & D team have more than 20 years' gear manufacturing and designing experience. The factory cooperated with Taiwan planetary gearbox technology team in the early period, and then established business department of the planetary gearbox , and developed the design and manufacturing process of product line of planetary gearbox series. Later, we developed and produced multi-joint robot industry reducers (RV high-precision pin-wheel reducers) with the Japanese NDK company, and the wave gear device (harmonic reducers) invented by American genius inventor C. W. Musser.

Harmonic reducer is composed of three components of wave generator, flexspline and circular spline. The product utilizes the transmission mode of metal winding deformation, and through the breakthrough of tooth meshing and material and processing accuracy, the company successfully developed CSG, CSF, SHG, SHF, SHD series harmonic reducer products, which are widely applied in horizontal reciprocating joint motion occasions like SCARA horizontal multi-joint robots.

RV high-precision cycloidal pinwheel reducer is composed of a cycloid pin wheel and a planet carrier. It features of small volume, strong impact resistance, large torque and high positioning accuracy, small vibration, large reduction ratio, etc. RV-E and RV-C series reducers are widely used in six-axis industrial robots, palletizing robots, and other robot fields like welding robots and positioners in the welding fields, and stamping robots in the punching field. Combined with the application of peripheral automation, Fenghua company developed the RV-EM, RV-CM, FHA & FHD series reducers models for direct-connected motor, which is more convenient for customers to choose and implement.

Fenghua high-precision reducers can directly replace the products manufactured by Germany and Japanese company. Fenghua product series range are full, and sizes and precision can be perfectly matched with the gearbox produced by Japanese & German manufacturers. The products are widely used in six-axis industrial robots, SCARA horizontal multi-joint robots, parallel robots, and palletizing robots, as well as welding robots in the welding field, positioners, stamping robots in the punching field, and rotating application of the fourth & fifth axis in the machine tool industry, and rotary positioning control in the fields of 3C, semiconductor and high-end medical devices. And Fenghua harmonic reducers can be found having been long-term applied in the fields of photovoltaic equipment, lithium battery and other new energy equipment.

The factory set up a service department in mainland of China in the early period, mainly promoting domestic market, and later established Fenghua Transmission Equipment (Shanghai) Co., Ltd. The company matches a large stocks of products to coordinate with servo motor manufacturers and system integration traders, rooting in the domestic market, and determined to serve the domestic automatic industry and robotic field by excellent products and serve for the Chinese robot cause and Industrial 4.0 direction.

CONTENTS

PAGES

Technical Data

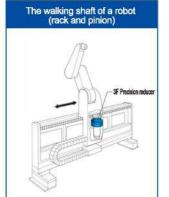
06-19

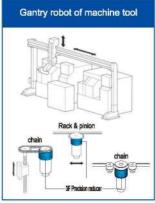
20-35

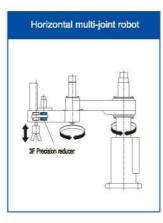
36-56

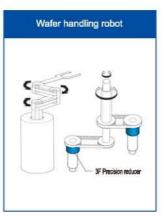
CSD Series

5/-64

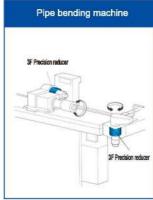


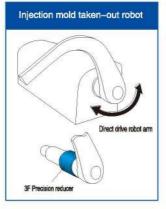


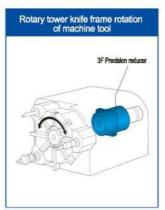

65-73

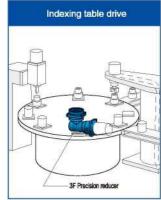

Product Application Industry

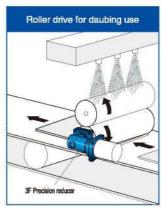
Semiconductor liquid crystal manufacturing equipment, robots, machine tools, and other frontier areas requiring precision motion control are widely used.

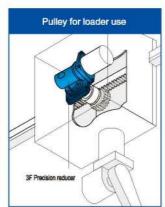


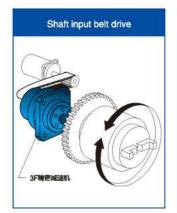


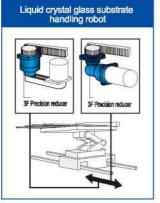


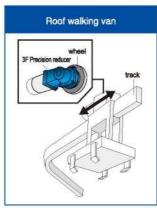


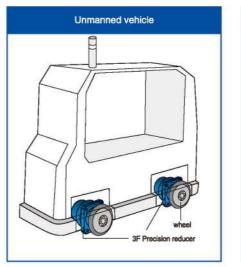


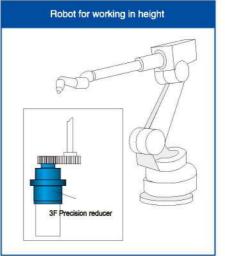


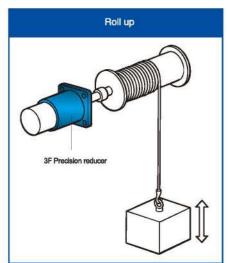


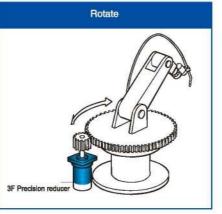


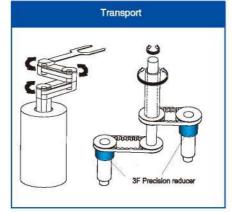


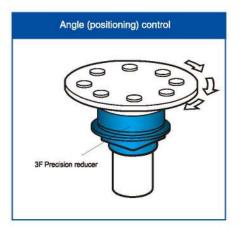


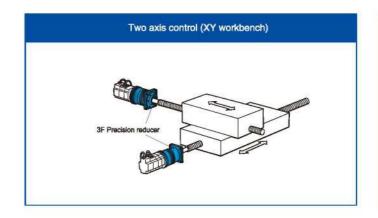


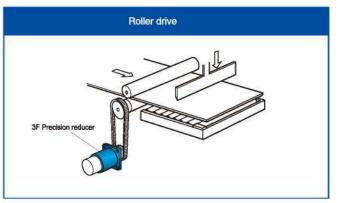


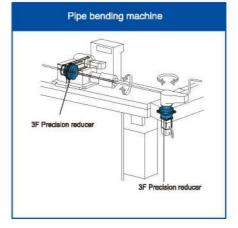


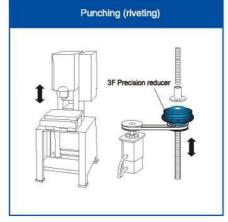


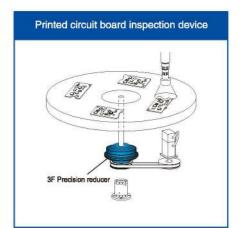












-03-

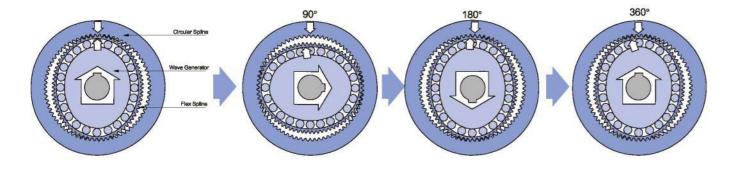
Structure of harmonic reducer

Wave Generator Flex Spline Circular Spline

Three basic components are assembled

Wave Generator

A ball bearing with thin-walled construction is fitted onto the outer circumference of an oval cam. The entire structure is oval. The inner ring of the bearing is fixed onto the oval cam and the outer ring elastically deforms through a ball. The wave generator can be mounted on a motor shaft.


Flex Spline

The inner gear of the rigid body, with teeth of equivalent size to those on the flex spline cut into the inner circumference. The circular spline has two more teeth than the flex spline and is normally fixed onto the gear casing.

Flex Spline

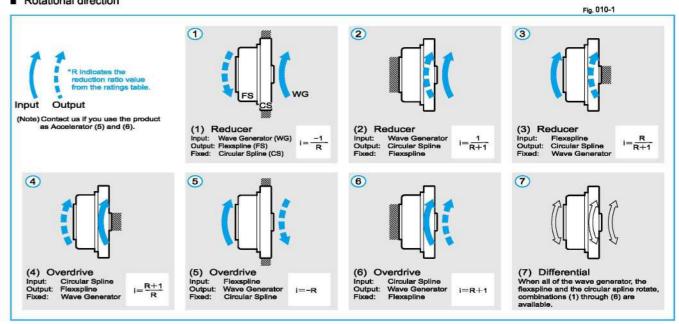
A cup-like elastic metal part with thin wall thickness. Teeth are cut into the outer circumference of the opening of the cup, from where the output is usually extracted.

Working principle of harmonic reducer

The flex spline is bent into an oval shape by the wave generator. Teeth on the long axis of the oval therefore mesh with the circular spline, while the teeth on the short axis of the oval perfectly detach from the circular spline.

Fixing the circular spline and rotating the wave generator clockwise will elastically deform the flex spline, sequentially moving the tooth meshing positions with the circular spline.

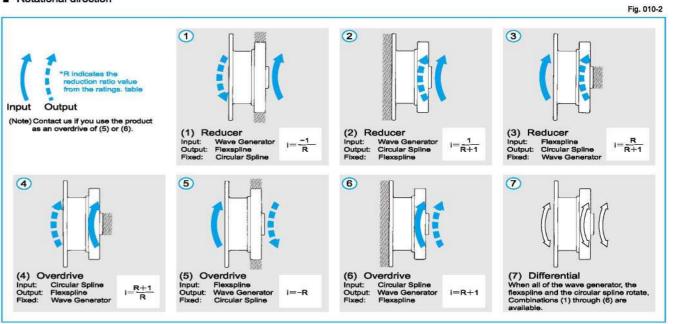
clockwise direction will move the flex spline counterclockwise by one tooth as a difference in the number of teeth.


Rotating the wave genera- When the wave generator tor through 180° in a rotates through one turn (360°), the flex spline movescounterclockwise by two teeth based on the difference in the number of teeth because the flex spline has two teeth fewer than the

Rotational direction and reduction ratio

Cup Style

Series: CSG, CSF, CSD, CSF-mini


Rotational direction

Silk hat

Series: SHG, SHF, SHD

Rotational direction

Reduction ratio

Number of teeth of the Flexspline:

The reduction ratio is determined by the number of teeth of the Flexspline and the Circular Spline

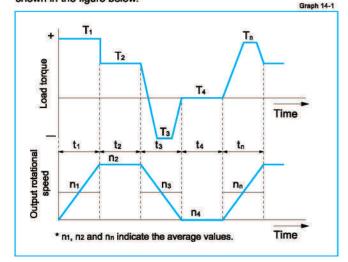
Number of	teeth of the Circula	r Spline: Z	'c		
Input: Output: Fixed:	Wave Generator Flexspline Circular Spline	Reduction	i ₁ = $\frac{1}{R}$	- = 1	Zf-Z

Input:	Wave Generator Circular Spline	Reduction	io =	1	=	Zc-Zf
Fixed:	Flexspline	ratio	12 -	R2		Zc

R1 Indicates the reduction ratio value from the ratings table

zxampie		
Number of teeth of the Flexspline:	200	
Number of teeth of the Circular Spline:	202	

Input:	Wave Generator Texaspline	Reduction		1 _	200-202	-1	
Fixed:	Circular Spline	ratio	11 -	R ₁	200	100	


Input: Wave Generator Reduction iz = $\frac{1}{5}$ = $\frac{202-200}{202}$ = $\frac{1}{101}$ 202 Flexspline

Product Sizing & Selection

In general, a servo system rarely operates at a continuous load and speed. The input rotational speed, load torque change and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied.

These fluctuating load torques should be converted to the average load torque when selecting a model number. As an accurate cross roller bearing is built in the direct external load support (output flange), the maximum moment load, life of the cross roller bearing and the static safety coefficient should also be checked.

 Checking the application motion profile Review the application motion profile. Check the specifications shown in the figure below.

Obtain the value of each application motion Load torque Tn (Nm) tn (sec) Output rotational speed n n (rpm) Normal operation pattern Starting (acceleration) T1, t1, n1 Steady operation (constant velocity) T2, t2, n2 Stopping (deceleration) T3, t3, n3 T4, t4, n4 Maximum rotational speed Max. output speed no max Max, input rotational speed ni max (Restricted by motors) Emergency stop torque

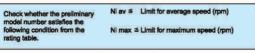
When impact torque is applied Ts, ts, ns

L₁₀ = L (hours)

Required life

■ Flowchart for selecting a size

Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance ratings.



Make a preliminary model selection with the following conditions. Tay \leq Limit for average torque torque

(See the rating table of each series)

no to any to a line to

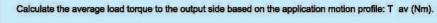
t1 + t2 +	tn	
max max ≥ R		
= no av R		
ax = no max	R	
	max ≥ R	max ≥ R

Check whether T₁ and T₃ are less than the repeated peak torque

Check whether Ts is less than the the momentary peak torque

Calculate (Ns) the allowable number of rotations during

Ns ≤ 1.0×104


 $L_{10} = 7000 \left(\frac{\text{Tr}}{\text{Tav}} \right)^3 \left(\frac{\text{nr}}{\text{ni av}} \right) \text{(hours)}$

Check whether the calculated life is equal to or more than the life of the wave generator (see Page 13).

The model number is confirmed.

■ Example of model number selection

Value of each application	motion profile	Maximum rotational speed	
Load torque	T _s (Nm)	Max. output speed	no max = 14 rpm
Time	t (sec)	Max. input speed	ni max = 1800 rpm
Output speed	n _n (rpm)	(Restricted by motors)	
Normal operation pattern		Emergency stop torque	
Starting (acceleration)	T1 = 400 Nm, t1 = 0.3sec, n1 = 7rpm	When impact torque is applied	T _s = 500 Nm, t _s = 0.15 sec,
Steady operation			ns = 14 rpm
(constant velocity)	T2 = 320 Nm, t2 = 3sec, n2 = 14rpm	Required life	
Stopping (deceleration)	T3 = 200 Nm, t3 = 0.4sec, n3 = 7rpm		L ₁₀ = 7000 (hours)
Dwell	T ₄ = 0 Nm, t ₄ = 0.2 sec, n ₄ = 0 rpm		

3 7 rpm 0.3 sec |400Nm|3+14 rpm 3 sec |320Nm|3+7 rpm 0.4 sec |200Nm|3 7 rpm 0.3 sec+14 rpm 3 sec+7 rpm 0.4 sec

Make a preliminary model selection with the following conditions. T av = 319 Nm ≤ 620 Nm (Limit for average torque for model number CSF-40-120-2A-GR: See the rating table on Page 39.) Thus, CSF-40-120-2A-GR is tentatively selected.

7 rpm 0.3 sec+14 rpm 3 sec+7 rpm 0.4 sec Calculate the average output rotational speed: no av (rpm) 0.3 sec + 3 sec + 0.4 sec + 0.2 sec Obtain the reduction ratio (R). 1800 rpm = 128.6 ≥ 120 14 rpm Calculate the average input rotational speed from the average output rotational speed (no av) and the reduction ni av = 12 rpm 120 = 1440 rpm ratio (R): niav (rpm) Calculate the maximum input rotational speed from the maximum output rotational speed (no max) and the ni max = 14 rpm 120 = 1680 rpm reduction ratio (R): ni max (rpm)

Check whether the preliminary selected model number satisfies the following condition from the

Ni av = 1440 rpm \leq 3600 rpm (Max average input speed of size 40) Ni max = 1680 rpm \leq 5600 rpm (Max input speed of size 40)

Check whether T1 and T3 are equal to or less than the repeated peak torque specification.

T1 = 400 Nm ≤ 617 Nm (Limit of repeated peak torque of size 40)
T3 = 200 Nm ≤ 617 Nm (Limit of repeated peak torque of size 40)

Check whether Ts is equal to or less than the

Ts = 500 Nm ≤ 1180 Nm (Limit for momentary torque of size 40)

Calculate the allowable number (Ns) rotation during impact torque and confirm ≤ 1.0×104

-= 1190 ≤ 1.0×104 14 rpm 120 0.15 sec

Calculate the lifetime.

 $L_{10} = 7000 \left(\frac{294 \text{ Nm}}{319 \text{ Nm}} \right)^3$ 2000 rpm 1440 rpm

Check whether the calculated life is equal to or more than the life of the wave generator (see Page 12). L₁₀ =7610 hours ≥ 7000 (life of the wave generator: L₁₀)

The selection of model number CSF-40-120-2A-GR is confirmed from the above calculations.

the

Table 017-1

See the Graph 017-1.

See the "Ratings Table"

Calculation formula:

of each series.

See Page 014.

Lubrication

Component Sets: CSD-2A, CSF-2A, CSG-2A, FB-2, FB-0, FR-2, SHF-2A, SHG-2A and SHD and SHG/SHF -2SO and -2SH gear units: Grease lubricant and oil lubricant are available for lubricating the component sets and SHD gear unit. It is extremely important to properly grease your component sets and SHD gear unit. Proper lubrication is essential for high performance and reliability. Harmonic Drive® component sets are shipped with a rust- preventative oil. The characteristics of the lubricating grease and oil types approved by Harmonic Drive are not changed by mixing with the preservation oil. It is therefore not necessary to remove the preservation oil completely from the gear components. However, the mating surfaces must be degreased before the assembly.

Gear Units: CSG/CSF 2UH and 2UH-LW; CSD-2UF and -2UH; SHG/SHF-2UH and 2UH- LW; SHG/SHF-2UJ; CSF Supermini, CSF Mini, and CSF-2UP.

Grease lubricant is standard for lubricating the gear units. You do not need to apply grease during assembly as the product is lubricated and shipped.

See Page 19 for using lubricant beyond the temperature range in table 16-2.

* Contact us if you want consistency zero (NLGI No.0) for maintenance reasons

Grease lubricant

Types of lubricant

Harmonic Grease® SK-1A

This grease was developed for Harmonic Drive® gears and features good durability and efficiency.

Harmonic Grease® SK-2

This grease was developed for small sized Harmonic Drive® gears and features smooth rotation of the Wave Generator since high pressure additive is

Harmonic Grease® 4B No.2 -

This has been developed exclusively for the CSF and CSG and features long life and can be used over a wide range of temperature.

- 1. Grease lubrication must have proper sealing, this is essential for 4B No.2. Rotating part: Oil seal with spring is needed Mating part: O ring or seal adhesive is needed.
- 2. The grease has the highest deterioration rate in the region where the grease is subjected to the greatest shear (near wave generator). Its viscosity is between JIS No.0 and No.00 depending on the operation.

Table 016-3

NLGI consistency No.	Mixing consistency range
0	355 to 385
00	400 to 430

Greace enecification

Table 016-4

Grease	SK-1A	SK-2	4B No.2		
Base oil	Refined oil	Refined oil	Composite hydrocarbon oil		
Base Viscosity cSt (25°C)	265 to 295	265 to 295	290 to 320		
Thickening agent	nickening agent Lithium soap base		Urea		
NLGI consistency No.	No. 2	No. 2	No. 1.5		
Additive	Additive Extreme-pressure additive, others		Extreme-pressure additive, others		
Drop Point 197°C		198°C	247°C		
Appearance	Yellow	Green	Light yellow		
Storage life	5 years in sealed condition	5 years in sealed condition	5 years in sealed condition		

Name of lubricant

	Harmonic Grease® SK-1A
Grease	Harmonic Grease® SK-2
	Harmonic Grease® 4B No.2
Oil	Industrial gear oil class-2 (extreme pressure) ISO VG68

Table 016-2

	SK-1A 0°C to + 40°C
Grease	SK-2 0°C to + 40°C
	4B No.2 -10°C to + 70°C
Oil	ISO VG68 0°C to + 40°C

* The hottest section should not be more than 40° above the ambient

Note: The three basic components of the gear - the Flexspline, Wave Generator and Circular Spline - are matched and serialized in the factory. Depending on the product they are either greased or prepared with preservation oil. Then the individual components are assembled. If you receive several units, please be careful not to mix the matched components. This can be avoided by verifying that the serial numbers of the assembled gear components are identical.

■ Compatible grease by size

Compatible grease varies depending on the size and reduction ratio. See the following compatibility table. We recommend SK-1A and SK-2 for general use.

Table 0						ble 01	
Size	8	11	14	17	20	25	32
SK-1A	_==	7 <u>15</u>	16_20	125	0	0	0
SK-2	0	0	0	0		-	-
4B No.2	Δ	Δ	Δ	Δ	0		0

Ratios 50:1* and above

Table of							
Size	8	11	14	17	20	25	32
SK-1A	===	100	==	177	0	0	0
SK-2	0	0	0	0	Δ	Δ	Δ
4B No.2	=	_	S		0	0	

Size	40	45	50	58	65	80	90	100
SK-1A	0	0	0	0	0	0	0	0
SK-2	Δ	-	756	1 1 - 0	2700	575	35-35	100
4RNo 2		n		-	п		-	-

- : Standard grease
- commended grease for long life and high load
- * Oil lubrication is required for component-sets size 50 or larger with a reduction ratio of 50:1.

Grease characteristics

Table 016-7

Table 016-6

Table 016-1

Grease	SK-1A	SK-2	4B No.2
Durability	0	0	0
Fretting resistance	0	0	0
Low-temperature performance	Δ	Δ	0
Grease leakage	0	0	Λ

When to replace grease

The wear characteristics of the gear are strongly influenced by the condition of the grease lubrication. The condition of the grease is affected by the ambient temperature. The graph 017-1 shows the maximum number of input rotations for various temperatures. This graph applies to applications where the average load torque does not exceed the rated torque.

Calculation formula when the average load torque

exceeds the rated torque Formula 017-1 $L_{\text{ot}} = L_{\text{etn}} \times \left(\frac{\text{Tr}}{\text{Tav}}\right)^3$

- Other precautions
- 1. Avoid mixing different kinds of grease. The gear should be in an individual case when installed.
- 2. Please contact us when you use HarmonicDrive® gears at constant load or in one direction continuously, as it may cause lubrication problems.
- 3. Grease leakage. A sealed structure is needed to maintain the high durability of the gear and prevent grease leakage.
- See the corresponding pages of the design guide of each series for "Recommended minimum housing clearance," Application guide" and "Application quantity."

Oil lubricant

Types of oil

The specified standard lubricant is "Industrial gear oil class-2 (extreme pressure) ISO VG68." We recommend the following brands as a commercial lubricant.

521			13	//2			95	311	Table 018-
Standard	Mobil Oil	Exxon	Shell	COSMO Oil	Japan Energy	NIPPON Oil	Idemitsu Kosan	General Oil	Klüber
Industrial gear oil class-2 (extreme pressure) ISO VG68	Mobilgear 600XP68	Spartan EP68	Omala Oil 68	Cosmo gear SE68	ES gear G68	Bonock M68, Bonock AX68	Daphne super gear LW68	General Oil SP gear roll 68	Syntheso D-68EP

Formula Symbols

Grease change (if average load torque exceeds rated torque)

Grease change (if average load torque

is equal to or less than rated torque)

Average load torque

Rated torque

input

revolutions

Nm

When to replace oil

First time 100 hours after starting operation Second time or after Every 1000 operation hours or every 6 months Note that you should replace the oil earlier than specified if the operating condition is demanding.

■ See the corresponding pages of the design guide of each series for specific details.

Lubricant for special environments

When the ambient temperature is special (other than the "temperature range of the operating environment" on Page 016-2), you should select a lubricant appropriate for the operating temperature range.

High temperature lubricant

Table 019-2

Type of lubricant	Lubricant and manufacturer	Available temperature range
Grease	Mobil grease 28: Mobil Oil	-5°C to + 160°C
Oil	Mobil SHC-626: Mobil Oil	-5°C to + 140°C

w temperati	lable u			
Type of lubricant	Lubricant and manufacturer	Available temperature range		
22	Multemp SH-KII: Kyodo Oil	-30°C to + 50°C		
Grease	Isoflex LDS-18 special A: KLÜBER	-25°C to + 80°C		
	SH-200-100CS: Toray Silicon	-40°C to + 140°C		
Oil	Syntheso D-32EP: KLÜBER	-25°C to + 90°C		

As the available temperature range indicates the temperature of the independent lubricant, restriction is added on operating conditions (such as load torque, rotational speed and operating cycle) of the gear. When the ambient temperature is very high or low, materials of the parts of the gear need to be reviewed for suitability. Contact us if operating in high temperature.

Harmonic Grease 4B No.2 can be used in the available temperature range shown in table 019-1. However, input running torque will increase at low temperatures, and grease life will be decreased at high temperatures due to oxidation and lubricant degradation.

-09--10-

Torsional Stiffness

Stiffness and backlash of the drive system greatly affects the performance of the servo system. Please perform a detailed review of these items before designing your equipment and selecting a model number.

Stiffness

Fixing the input side (wave generator) and applying torque to the output side (flexspline) generates torsion almost proportional to the torque on the output side. Figure 018-1 shows the torsional angle at the output side when the torque applied on the output side starts from zero, increases up to +To and decreases down to -To. This is called the "Torque – torsion angle diagram," which normally draws a loop of 0 – A – B – A' – B' – A. The slope described in the "Torque – torsion angle diagram" is represented as the spring constant for the stiffness of the HarmonicDrive ® gear (unit: Nm/rad).

As shown in Figure 020-1, this "Torque – torsional angle diagram" is divided into 3 regions, and the spring constants in the area are represented by K1, K2 and K3.

 $K_1 \cdots$ The spring constant when the torque changes from [zero] to [T₁] $K_2 \cdots$ The spring constant when the torque changes from [T₁] to [T₂] $K_3 \cdots$ The spring constant when the torque changes from [T₂] to [T₃]

- See the corresponding pages of each series for values of the spring constants (K₁, K₂, K₃) and the torque-torsional angles (T₁, T₂, - θ₁, θ₂).
- Example for calculating the torsion angle

The torsion angle (0) is calculated here using CSF-25-100-2A-GR as an example.

When the applied torque is T $\,$ 1 or less, the torsion angle θ $\,$ L1 is calculated as follows:

When the load torque T_{L1}=2.9 Nm

θL1 =TL1/K1

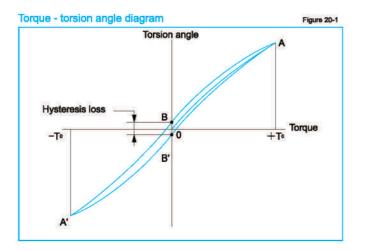
=2.9/3.1×104

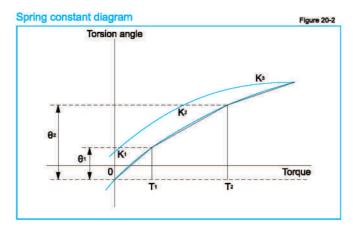
=9.4×10⁻⁵ rad(0.33 arc min)

When the applied torque is between T $_{1}$ and T₂, the torsion angle θ $_{12}$ is calculated as follows:

When the load torque is T_{L2} =39 Nm $\theta_{L2} = \theta_1 + (T_{L2} - T_1)/K_2$

 $=4.4\times10^4 + (39-14)/5.0\times10^4$


=9.4×104 rad(3.2 arc min)


When a bidirectional load is applied, the total torsion angle will be 2 x θ Lx plus hysteresis loss.

* The torsion angle calculation is for the gear component set only and does not include any torsional windup of the output shaft.

Note: See p.120 for torsional stiffness for pancake gearing

- Hysteresis loss (Silk hat and cup style only)
 As shown in Figure 020-1, when the applied torque is increased to the rated torque and is brought back to [zero], the torsional angle does not return exactly back to the zero point This small difference (B B') is called hysteresis loss.
- See the corresponding page of each series for the hysteresis loss value.

Backlash (Silk hat and cup style only)

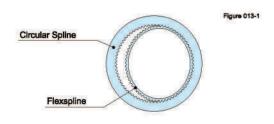
Hysteresis loss is primarily caused by internal friction. It is a very small value and will vary roughly in proportion to the applied load. Because HarmonicDrive® gears have zero backlash, the only true backlash is due to the clearance in the Oldham coupling, a self-aligning mechanism used on the wave generator. Since the Oldham coupling is used on the input, the backlash measured at the output is extremely small (arc-seconds) since it is divided by the gear reduction ratio.

Torque Limits

Strength of flexspline

The Flexspline is subjected to repeated deflections, and its strength determines the torque capacity of the Harmonic Drive® gear. The values given for Rated Torque at Rated Speed and for the allowable Repeated Peak Torque are based on an infinite fatigue life for the Flexspline.

The torque that occurs during a collision must be below the momentary peak torque (impact torque). The maximum number of occurrences is given by the equation below.

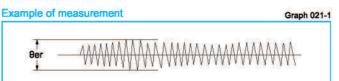

Buckling torque

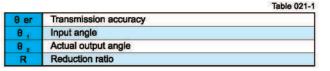
When a highly excessive torque (16 to 17 times rated torque) is applied to the output with the input stationary, the flexspline may experience plastic deformation. This is defined as buckling torque.

Ratcheting torque

When excessive torque (8 to 9 times rated torque) is applied while the gear is in motion, the teeth between the Circular Spline and Flexspline may not engage properly.

This phenomenon is called ratcheting and the torque at which this occurs is called ratcheting torque. Ratcheting may cause the Flexspline to become non-concentric with the Circular Spline. Operating in this condition may result in shortened life and a Flexspline fatigue failure.




"Dedoidal" condition.

Positional Accuracy

Positional Accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values shown in the table are maximum values.

 See the corresponding pages of each series for transmission accuracy values.

Formula 021-1

 θ er= θ_2 - $\frac{\theta_1}{R}$

Vibration

The primary frequency of the transmission error of the HarmonicDrive® gear may cause a vibration of the load inertia. This can occur when the driving frequency of the servo system including the HarmonicDrive® gear is at, or close to the resonant frequency of the system. Refer to the design guide of each series.

The primary component of the transmission error occurs twice per input revolution of the input. Therefore, the frequency generated by the transmission error is 2x the input frequency (rev / sec).

If the resonant frequency of the entire system, including the HarmonicDrive® gear, is F=15 Hz, then the input speed (N) which would generate that frequency could be calculated with the formula below.

Formula 021-2

 $N = \frac{15}{2}$ 60 = 450 rpm

The resonant frequency is generated at an input speed of 450 rpm.

How to the calculate resonant frequency of the system Formula 021-3

Formu	la variables	(0)	Table 021-2
f	The resonant frequency of the system	Hz	
К	Spring constant	Nm/rad	See pages of each series
J	Load inertia	kgm²	

no resonant nequency to generated at an input speed of 400 ipin.

^{*} See the corresponding pages of each series for buckling torque values.

Rating Table Definitions

See the corresponding pages of each series for values.

Rated torque

Rated torque indicates allowable continuous load torque at rated input speed.

■ Limit for Repeated Peak Torque (see Graph 12-1)

During acceleration and deceleration the Harmonic Drive® gear experiences a peak torque as a result of the moment of inertia of the output load. The table indicates the limit for repeated peak torque.

■ Limit for Average Torque

In cases where load torque and input speed vary, it is necessary to calculate an average value of load torque. The table indicates the limit for average torque. The average torque calculated must not exceed this limit. (calculation formula: Page 14)

■ Limit for Momentary Peak Torque (see Graph 12-1)

The gear may be subjected to momentary peak torques in the event of a collision or emergency stop. The magnitude and frequency of occurrence of such peak torques must be kept to a minimum and they should, under no circumstance, occur during normal operating cycle. The allowable number of occurrences of the momentary peak torque may be calculated by using formula 13-1.

■ Maximum Average Input Speed Maximum Input Speed Do not exceed the allowable rating. (calculation formula of the average input speed: Page 14).

The rating indicates the moment of inertia reflected to the gear input.

Life of the wave generator

■ Life of the wave generator

The life of a gear is determined by the life of the wave generator bearing. The life may be calculated by using the input speed and the output load torque.

	togic	Table 012-
	Life	
Series name	CSF, CSD, SHF, SHD, CSF-mini	CSG, SHG
L10	7,000 hours	10,000 hours
L50 (average life)	35,000 hours	50,000 hours

* Life is based on the input speed and output load torque from the rating ta

Calculation formula for Rated Lifetime

Formula 012-1

Lh=Ln ·	Tr	/ Nr	
LII-LII (Tav	Nav	

	1806 012 2
Ln	Life of L10 or Lso
Tr	Rated torque
Nr	Rated input speed
Tav	Average load torque on the output side (calculation formula: Page 14)
Nav	Average input enced (calculation formula: Page 14)

On starting torque

Starting torque refers to that when FH harmonic reducer is mounted on the shell and applied torque to the input side (high-speed side), "start-up torque" produced by the instantaneous rotation of the output side (low-speed side). The values shown in the series tables are the maximum and the lower limit is about 1/2-1/3 of the maximum.

On increasing starting torque

Increasing starting torque refers to that when FH harmonic reducer is mounted on the shell and applied torque to the input side (high-speed side), "start-up torque" produced by the instantaneous rotation of the output side (low-speed side). The values shown in the series tables are the maximum, and the lower limit is about 1/2 of the maximum.

Load-free operating torque -

Load-free operating torque refers to the necessary input side (high-speed axle side) torque for rotating the FH harmonic reducer under no-load conditions. For reduction ratios other than 100, please add the correction amount shown in each series to calculate.

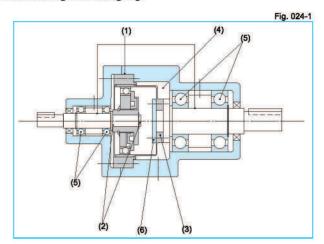
Efficiency characteristics

Efficiency varies according to the following conditions.

- Reduction ratio
- Input speed
- Load torque
- Temperature
- Lubrication conditions (types and its amount of use)
- Efficiency correction oefficient

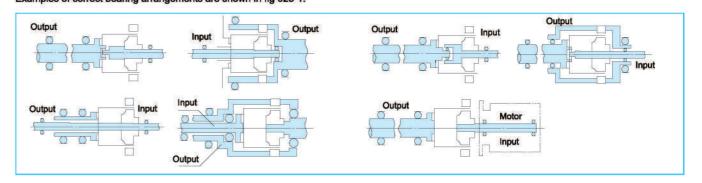
When the load torque is less than the rated torque, the efficiency decreases.

Please calculate the correction coefficient Ke according to the series of efficiency correction coefficient tables, and calculate the efficiency by referring to the following calculation example.


Design Guidelines

Design guideline

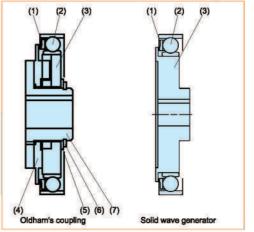
The relative perpendicularity and concentricity of the three basic Harmonic Drive® elements have an important influence on accuracy and service life.


Misalignments will adversely affect performance and reliability. Compliance with recommended assembly tolerances is essential in order for the advantages of Harmonic Drive® gearing to be fully realized. Please consider the following when designing:

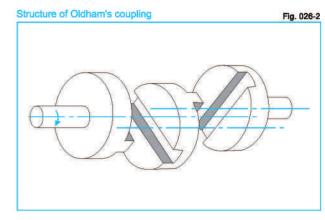
- (1) Input shaft, Circular Spline and housing must be concentric.
- (2) When operating, an axial force is generated on the wave generator. Input bearings must be selected to accommodate this axial load. See page 27.
- (3) Even though a HarmonicDrive® gear is compact, it transmits large torques. Therefore, assure that all required bolts are used to fastened the circular spline and flexspline and that they are tightened to the recommended torque.
- (4) As the flexspline is subject to elastic deformation, the A minimal clearance between the flexspline and housing is required. Refer to "Minimum Housing Clearance" on the drawing dimension tables.
- (5) The input shaft and output shaft are supported by anti-friction bearings. As the wave generator and flexspline elements are meant to transmit pure torque only, the bearing arrangement needs to isolate the harmonic gearing from external forces applied to either shaft. A common bearing arrangement is depicted in the diagram.
- (6) A clamping plate is recommended (item 6). Its purpose is to spread fastening forces and to avoid any chance of making physical contact with the thin section of the flexspline diaphragm. The clamping plate shall not exceed the diaphragm's boss diameter and is to be designed in accordance with catalog recommendations.

Bearing support for the input and output shafts

For the component sets, both input and output shafts must be supported by two adequately spaced bearings in order to withstand external radial and axial forces without excessive deflection. In order to avoid damage to the component set when limited external loads are anticipated, both input and output shafts must be axially fixed. Bearings must be selected whose radial play does not exceed ISO-standard C 2 class or "normal" class. The bearings should be axially and radially preloaded to eliminate backlash. Examples of correct bearing arrangements are shown in fig 025-1.



Wave generator

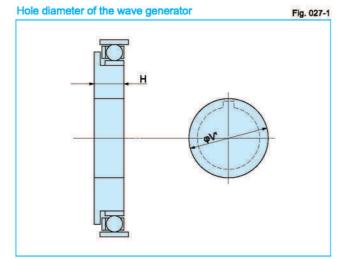

Structure of the wave generator

The wave generator includes an Oldham's coupling type with a self-aligning structure and an integrated solid wave generator without a self-aligning structure, and which is used depends on the series

See the diagram of each series for details. The basic structure of the wave generator and the shape are shown below.

- (1) Ball Separator (3) Wave generator plug
- Snap ring

-13-


Maximum hole diameter of wave generator

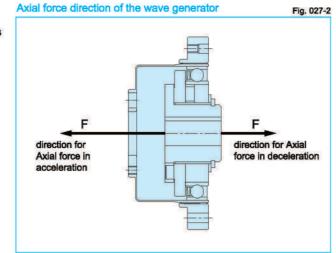
The standard hole dimension of the wave generator is shown for each size. The dimension can be changed within a range up to the maximum hole dimension. We recommend the dimension of keyway based on JIS standard. It is necessary that the dimension of keyways should sustain the transmission torque.

* Tapered holes are also available

In cases where a larger hole is required, use the wave generator without the Oldham coupling. The maximum diameter of the hole should be considered to prevent deformation of the Wave Generator plug by load torque. The dimension is shown in the table below and includes the dimension of depth of keyway.

(This is the value including the dimension of the depth of keyway.)

Hole diameter of the wave generator hub with Oldham coupling


				_											Offic. III
Size	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
Standard dim. (H7)	3	5	6	8	9	11	14	14	19	19	22	24	28	28	28
Minimum hole dim.	-	-	3	4	5	6	6	10	10	10	13	16	16	19	22
Maximum hole dim.	_		8	10	13	15	15	20	20	20	25	30	35	37	40

waximum noie u	lialliete	With IOU	Oldilali	Coupill	ig				*						Unit: mm
Size	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
Max. hole dia.φV'	10	14	17	20	23	28	36	42	47	52	60	67	72	84	95
Min. plug thick. H.2.1	5.7	6.7	7.2	7.6	11.3	11.3	13.7	15.9	17.8	19	21.4	23.5	28.5	31.3	34.9

Axial Force of Wave Generator

When the gear is used to accelerate a load, the deflection of the Flexspline leads to an axial force acting on the Wave Generator. This axial force, which acts in the direction of the closed end of the Flexspline, must be supported by the bearings of the input shaft (motor shaft). When the gear is used to decelerate a load, an axial force acts to push the Wave Generator out of the Flexspline cup. Maximum axial force of the Wave Generator can be calculated by the equation shown below. The axial force may vary depending on its operating condition. The value of axial force tends to be a larger number when using high torque, extreme low speed and constant operation. The force is calculated (approximately) by the equation. In all cases, the Wave Generator must be axially (in both directions), as well as torsionally, fixed to the input shaft.

Please contact us for further information on attaching the Wave Generator to the input (motor) shaft.

Formula for Axial Force

Reduction ratio	Calculation formula
30	F=2×_T×0.07×tan 32°
50	F=2×_T×0.07×tan 30°
80 or more	F=2×_T×0.07×tan 20°

Symbols for Formula

able	027 4
anie	UZ1-4

Table 027-3

F	Axial force	N	See Figure 027-2
D	Size	m	2
Т	Output torque	Nm	

Calculation example

Formula 027-1

Table 027-1

Table 027-2

CSF series Model name: Size: Reduction ratio: 50 Output torque: 382 Nm (maximum allowable momentary torque)

 $F=2 \times \frac{}{(32 \times 0.00254)}$ ×0.07×tan 30°

F=380N

Assembly Precautions

Sealing is needed to maintain the high durability of the gear and prevent grease leakage. Recommended for all mating surfaces, if the o-ring is not used. Flanges provided with o-ring grooves must be sealed when a proper seal cannot be achieved using the o-ring alone.

 Rotating Parts 	 Oil seal with spring is needed.
 Mating flange 	 O-ring or seal adhesive is needed.
 Screw hole area 	Screws should have a thread
	lock (LOCTITE® 242 is
	recommended) or seal adhesive.

ealing re	ecommendations for	gear units Table 02
Area	requiring sealing	Recommended sealing method
Output	Holes which penetrate housing	Use O-ring (supplied with the product)
side	Installation screw / bolt	Screw lock adhesive which has effective seal (LOCTITE® 242 is recommended)
2010-1100	Flange surfaces	Use O-ring (supplied with the product)
Input side	Motor output shaft	Please select a motor which has an oil seal on the output shaft.

(Note) If you use Harmonic Grease 4BNo.2, strict sealing is required.

Assembly precautions

The wave generator is installed after the flexspline and circular spline. If the wave generator is not inserted into the flexspline last, gear teeth scuffing damage or improper eccentric gear mesh may result. Installation resulting in an eccentric tooth mesh (Dedoidal) will cause noise and vibration, and can lead to early failure of the gear. For proper function, the teeth of the flexspline and Circular Spline mesh symmetrically.

- Precautions on the wave generator
- 1. Avoid applying undue axial force to the wave generator during installation. Rotating the wave generator bearing while inserting it is recommended and will ease the process.
- 2. If the wave generator does not have an Oldham coupling, extra care must be given to ensure that concentricity and inclination are within the specified limits
- Precautions on the circular spline The circular Spline must not be deformed in any way during the assembly. It is particularly important that the mounting surfaces are prepared correctly
- 1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
- 2. Especially in the area of the screw holes, burrs or foreign matter should not be present.
- 3. Adequate relief in the housing corners is needed to prevent interference with the corner of the circular spline.
- 4. The circular spline should be rotatable within the housing. Be sure there is not interference and that it does not catch on anything.
- 5. When a bolt is inserted into a bolt hole during installation, make sure that the bolt fits securely and is not in an improper position or inclination.
- 6. Do not apply torque at recommended torque all at once. First, apply torque at about half of the recommended value to all bolts, then tighten at recommended torque. Order of tightening bolts must be diagonal.
- 7. Avoid pinning the circular spline if possible as it can reduce the rotational precision and smoothness of operation.

Precautions on the flexspline

1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion.

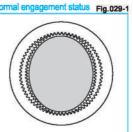
- 2. Especially in the area of the screw holes, burrs or foreign matter should not be present
- 3. Adequate clearance with the housing is needed to ensure no interference especially with the major axis of flexspline
- 4. Bolts should rotate freely when installing through the mounting holes of the flexspline and should not have any irregularity due to the shaft bolt holes being misaligned or oblique.
- 5. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them to the specified torque. Tighten them in an even, crisscross pattern.
- 6. The flexspline and circular spline are concentric after assembly. After installing the wave generator bearing, if it rotates in unbalanced way, check the mounting for dedoidal or non-concentric installation.
- 7. Care should be taken not to damage the flexspline diaphragm or gear teeth during assembly.

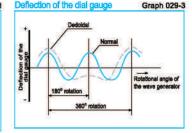
Avoid hitting the tips of the flexpline teeth and circular spline teeth. Avoid installing the CS from the open side of the flexspline after the wave generator has been installed.

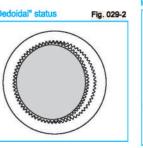
Rust prevention

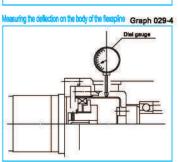
Although the Harmonic Drive [®] gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.

"Dedoidal" state


It is normal for the flexspline to engage with the circular spline symmetrically as shown in Figure 029-1. However, if the ratcheting phenomenon, which is described on Page 013, is caused or if the three parts are forcibly inserted and assembled, engagement of the teeth may be out of alignment as shown in Figure 029-2. This is called "dedoidal". Note: Early failure of the gear will occur.


■ How to check "dedoidal"


By performing the following methods, check whether the gear engagement is "dedoidal".

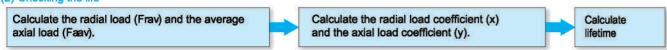

- (1) Judging by the irregular torque generated when the wave generator turns
 - 1) Slowly turn the input shaft with your hand in a no-load condition. If you can turn it with average force, it is normal. If it turns irregularly, it may be
 - 2) Turn the wave generator in a no-load condition if it is attached to a motor. If the average current value of the motor is about 2 to 3 times the normal value, it may be "dedoidal".
- (2) Judging by measuring vibration on the body of the flexspline

The scale deflection of the dial gauge draws a sine wave as shown by the solid line in Graph 029-3 when it is normally assembled. When "dedoidal" occurs, the gauge draws a deflected wave shown by the dotted line as the flexspline is out of alignment.

Checking Output Bearing

A precision cross roller bearing is built in the unit type and the gear head type to directly support the external load (output flange) (precision 4-point contact ball bearing for the CSF-mini series).

Please calculate maximum moment load, life of cross roller bearing, and static safety factor to fully maximize the performance of a housed unit (gearhead).

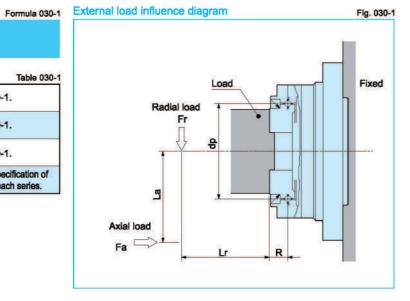

■ See the corresponding pages on each series for main bearing

Checking procedure

(1) Checking the maximum moment load (Mmax)

(2) Checking the life

(3) Checking the static safety coefficient

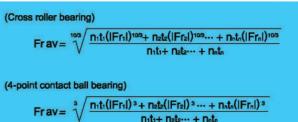


How to calculate the maximum moment load

Maximum moment load (M max) is obtained as follows. Make sure that M max ≦ Mc.

M max = Frmax (Lr+R) +Famax · La

ymbols i	or Formula 030-1	4	Table 03
Fmax	Max. radial load	N(kgf)	See Fig. 030-1.
Famax	Max. axial load	N(kgf)	See Fig. 030-1.
Lr, La	· · · · · · · · · · · · · · · · · · ·	m	See Fig. 030-1.
R	Offset amount	m	See Fig. 030-1 and "Specification of the output bearing" of each series.


How to calculate the average load

(Average radial load, average axial load, average output speed)

When the radial load and axial load vary, the life of cross roller bearing can be determined by converting to an average load.

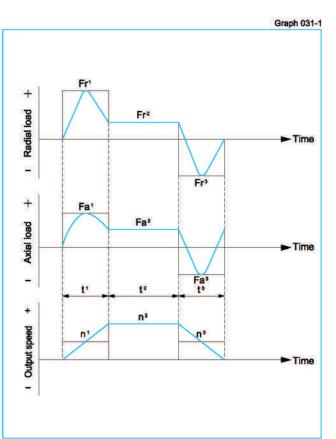
How to calculate the average radial load (Frav)

Note that the maximum radial load in this Fri and the maximum radial load in ta is Fra.

How to calculate the average axial load (Faav)

(Cross roller bearing)

Fa av =
$$\sqrt[100]{\frac{n_1t_1(|Fa_1|)^{100} + n_2t_2(|Fa_2|)^{100} \cdots + n_nt_n(|Fa_n|)^{100}}{n_1t_1 + n_2t_2 \cdots + n_nt_n}}$$


(4-point contact ball bearing)

Fa av =
$$\sqrt[3]{\frac{n_1t_1(|Fa_1|)^3 + n_2t_2(|Fa_2|)^3 + n_1t_1(|Fa_1|)^3}{n_1t_1 + n_2t_2 + n_1t_1}}$$

Note that the maximum axial load in this Far and the maximum axial load in to is Fas.

How to calculate the average output speed (Nav)

Nav =
$$\frac{n_1t_1 + n_2t_2 ... + n_nt_n}{t_1 + t_2 ... + t_n}$$

How to calculate the radial load coefficient (X) and axial load coefficient (Y)

Formula 031-4

How to calculate the load coefficient		Х	Y
Faav	<=1.5	120	0.46
Frav+2 (Frav (Lr+R) + Fav • La) /dp	-1.0	1	0.45
Faav	>1.5	0.67	0.67
Frav+2 (Frav (Lr+R) + Frav • La) /dp	-1.0	0.07	0.07

Symbols for Formula 031-4		Table 03	
Frav	Average radial load	N(kgf)	See "How to calculate the average load." See Formula 031-1.
Faav	Average axial load	N(kgf)	See "How to calculate the average load." See Formula 031-2.
Lr, La	8-29	m	See fig. 030-1
R	Offset amount	m	See Fig. 030-1 and "Main roller bearing specifications" of each series
dр	Pitch circle diameter of a roller	m	See Fig. 030-1 and "Specification of the output bearing" of each series.

-17--18-

Life of the output bearing

Calculate life of the output bearing by Formula 032-1. You can calculate the dynamic equivalent radial load (Pc) by Formula 032-2.

(Cross roller bearing)					A 5-000
(C.CCC, C.C., Dodning)	10 ⁶	1	С	103	
L ₁₀ = 6	0 × Nav	-× (-	w•Pc	-)	
4-point contact ball bea	ring)				
1000	10°	-1	C	13	
L ₁₀ = 6	0 × Nav	- * (- f	w•Pc	_)	

Symbols for	Formula 032	-1	

L10	Life	hour	(2 - 2)
Nav	Average output rated load speed	rpm	See "How to calculate the average load."
С	Basic dynamic rated load	N(kgf)	See "Specification of the output bearing" of each series.
Pc	Dynamic equivalent	N(kgf)	See Formula 032-2.
fw	Load coefficient	-	See Table 032-3.

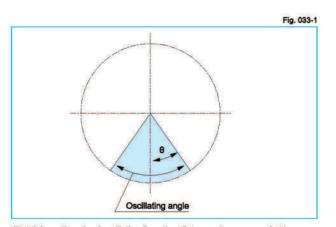
Load coefficient	Table 032-3

Load status	fw
Steady operation without impact and vibration	1 to 1.2
Normal operation	1.2 to 1.5
Operation with impact and vibration	1.5 to 3

How to calculate life during oscillating motion

Calculate the life of the cross roller bearing during oscillating motion by Formula 033-1.

				r ominaia oc
(Cross roller bearing)				
10°	8	90	. (C	/10/3
60 × n1		θ	fw·Pc	7
(4-point contact ball bearing)				
10°		90	_ (C	13
60 × n1	100	θ	fw · Pc	-)


		_			
· C.	ymbols	for E		- 03	2 4
	VITIDOIS	Югг	unnu	ലധാ	O-1

· ·	Rated life for	-	
Loc	oscillating motion	hour	
n1	Round trip oscillation each minute	cpm	×
С	Basic dynamic rated load	N(kgf)	3
Pc	Dynamic equivalent radial load	N(kgf)	See Formula 032-2.
fw	Load coefficient	a -a	See Table 032-3.
θ	Oscillating angle /2	Degree	See Fig. 033-1.

$Pc = X \cdot \left(Frav + \frac{2(Frav(Lr+R) + Fav \cdot La)}{dp} \right) + Y \cdot Faav$

Formula 032-2

ymbol	s for Formula 032-2		Table 03
Frav	Average radial load	N(kgf)	See "How to calculate the average load." See Formula 031-1.
Faav	Average axial load	N(kgf)	See "How to calculate the average load." See Formula 031-2.
dp	Pitch circle diameter	m	See Fig. 030-1 and "Specification of the output bearing" of each series.
x	Radial load coefficient	1 	See Formula 031-4.
Y	Axial load coefficient		See Formula 031-4.
Lr, La	===3	m	See Figure 030-1.
R	Offset	m	See Fig. 030-1 and "Specification of the output bearing" of each series.
M ave	Average moment load	Nm	

(Note) A small angle of oscillation (less than 5 degrees) may cause fretting corrosion to occur since lubrication may not circulate properly. Contact us if this happens.

How to calculate the static safety coefficient

Basic static rated load is an allowable limit for static load, but its limit is determined by usage. In this case, static safety coefficient of the cross roller bearing can be calculated by Formula 034-2.

Table 032-1

Symbols for Formula 034-1

Co	Basic static rated load	N(kgf)	See "Specification of the output bearing" of each series.
Po	Static equivalent radial load	N(kgf)	See Formula 034-2.

Static Safety	Coefficient	Table 034-3
---------------	-------------	-------------

Operating condition of the roller bearing	fs
When high rotation precision is required	≧3
When shock and vibration are expected	≥2
Under normal operating condition	≥1.5

Formula 034-2

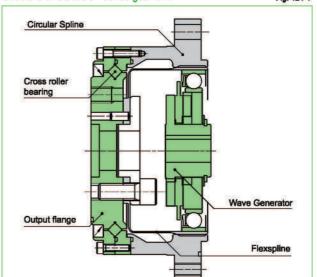
Po = Frmax+ -	2M max	-+0.44Fa max	
FU - Filliax+ -	dp		

Table 024 2

Symbols for Formula 034-2

Symbol	3 IOI I OITIIUIA 004-2		Table 034-2
Frmax	Max. radial load	N(kgf)	
Famax	Max. axial load	N(kgf)	See "How to calculate the maximum moment load" on Page 030.
Mmax	Max. moment load	Nm(kgfm)	9000
dp	Pitch circle diameter of a roller	m	See Fig. 030-1 and "Specification of the output bearing" of each series.

Features


CSG/CSF Gear Unit

CSF/CSG are housed component gear sets combined with a precision cross roller output bearing & flange. A highly rigid cross roller bearing is built in to directly support (output bearing) the external load. They are a very compact, robust and easy to use gearhead solution. CSF and CSG are also available in lightweight

Features

- Zero backlash
- Compact design
- High-torque capacity
- High stiffness
- High-positional and rotational accuracies

Structure of CSG/CSF series gear unit

CSF v. CSG -

CSG high torque

• 30% Higher torque than CSF series.

• The life has been improved by 43% (10,000 hours) compared to CSF.

CSF: standard torque

· Reduction ratio of 30:1 included for high-speed

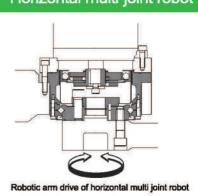
CSF/CSG-LW series: Lightweight (sizes 14 to 45)

• 30% average lower weight than Standard Series.

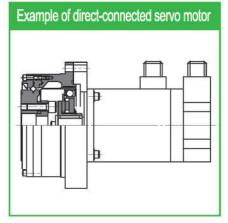
· Same performance as CSF/CSG series.

Main markets

Industrial robot

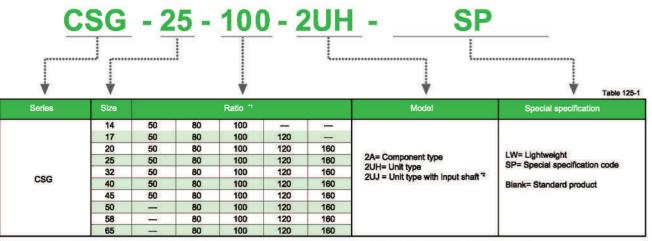

Various mechanical equipment

Vertical multi-joint robot


* In accordance with this assembly example, a seal structure is needed to prevent grease leakage

Bending and twisting drive of the wrist of vertical multi joint robot

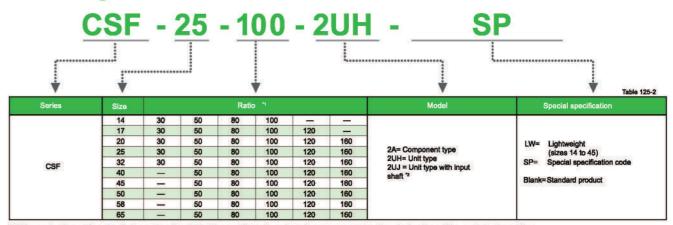
Horizontal multi-joint robot



* In accordance with this assembly example, a seal structure is needed to prevent grease leakage

-19-

*1 The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline *2 Contact us for details.


Rating table

Size	Ratio		Forque at Orpm	Rep	it for eated Torque		Average rque		omentary Torque	Maximu Speed	m Input I (rpm)		Average eed (rpm)		ent of ertia	
		Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Oil lubricant	Grease lubricant	Oil lubricant	Grease lubricant	I ×10 ⁻⁴ kgm ⁷	J ×10 ⁻⁵ ks	
	50	7.0	0.7	23	2.3	9	0.9	46	4.7	Salara esta						
14	80	10	1.0	30	3.1	14	1.4	583	5.93	14000	8500	6500	3500	0.033	0.03	
	100	10	1.0	36	3.7	14	1.4	58*3	5.93	100000000	100-00000	S. Santanana	CONTRACTO CO	2040570000000		
	50	21	2.1	44	4.5	34	3.4	91	9							
4-	80	29	2.9	56	5.7	35	3.6	109 3	113	40000	7000	0500	2500	0.070	0.00	
17	100	31	3.2	70	7.2	51	5.2	109"3	113	10000	7300	6500	3500	0.079	0.08	
	120	31	3.2	70	7.2	51	5.2	109 '3	113							
	50	33	3.3	73	7.4	44	4.5	127	13				11 12			
	80	44	4.5	96	9.8	61	6.2	165	17	1						
20	100	52	5.3	107	10.9	64	6.5	191	20	10000	6500	6500	3500	0.193	0.19	
	120	52	5.3	113	11.5	64	6.5	191	20	1. Table of Contracts	anatores	NASTONES.	2002000	000	20000000	
	160	52	5.3	120	12.2	64	6.5	191	20							
	50	51	5.2	127	13	72	7.3	242	25							
	80	82	8.4	178	18	113	12	332	34	7500 5600	00 5600					
25	100	87	8.9	204	21	140	14	369	38			5600	3500	0.413	0.421	
1-1-1-1	120	87	8.9	217	22	140	14	*4	*4			(0.0.0.0				
	160	87	8.9	229	23	140	14	*4	*4							
	50	99	10	281	29	140	14	497	51							
	80	153	16	395	40	217	22	738	75		0 4800					
32	100	178	18	433	44	281	29	841	86	7000		4600	3500	1.69	1.7	
	120	178	18	459	47	281	29	892	91	1000000		12000	22123	552-5		
	160	178	18	484	49	281	29	892	91	1						
	50	178	18	523	53	255	26	892	91		4000			4.50	4.59	
	80	268	27	675	69	369	38	1270	130							
40	100	345	35	738	75	484	49	1400	143	5600		3600	3000			
(94270)	120	382	39	802	82	586	60	1510 "4	154*4	0.000.000.000						
	160	382	39	841	86	586	60	1510 "4	154 4							
	50	229	23	650	66	345	35	1235	126							
	80	407	41	918	94	507	52	1651	168							
45	100	459	47	982	100	650	66	2041	208	5000	3800	3300	3000	8.68	8.8	
10	120	523	53	1070	109	806	82	2288	233	0000	5000	0000	0000	0.00	0.0	
	160	523	53	1147	117	819	84	2483	253							
	80	484	49	1223	125	675	69	2418	247							
	100	611	62	1274	130	866	88	2678	273	1000000	133455	September	enter	(B) Exercise	(5/5-1)	
50	120	688	70	1404	143	1057	108	2678	273	4500	3500	3000	2500	12.5	12.	
	160	688	70	1534	156	1096	112	3185	325							
	80	714	73	1924	196	1001	102	3185	325				7 3			
	100	905	92	2067	211	1378	141	4134	422	N0754	10000000	20.000	0.750.00	829-650	-	
58	120	969	99	2236	228	1547	158	4329	441	4000	3000	2700	2200	27.3	27.	
	160	969	99	2392	244	1573	160	4459	455			CONTRACTOR .	35355	2012	(Coldina)	
	80	969	99	2743	280	1352	138	4836	493				0 0			
	100	1236	126	2990	305	1976	202	6175	630							
65	120	1236	126	3263	333	2041	202	6175	630	3500	2800	2400	1900	46.8	47.	
	160	1236	126	3419	349	2041	208	6175	630			9.00	50000 S000000	Jr., 60		
	100	1230	120	3419	349	2041	700	1 01/0	0.30							

(Note) 1. Moment of inertia: $I=\frac{1}{4}$ GD²

- 2. See "Engineering data" on Page 12 for details of the terms.
- 3. The value of allowable max momentary torque is limited by the transmission torque of the unit. (See table 138-1, 2 on p.138.)
- 4. When using LW series, see the transmission torque of the unit (Table 138-3, 4 on p.138) for the allowable maximum momentary torque.

Ordering Code

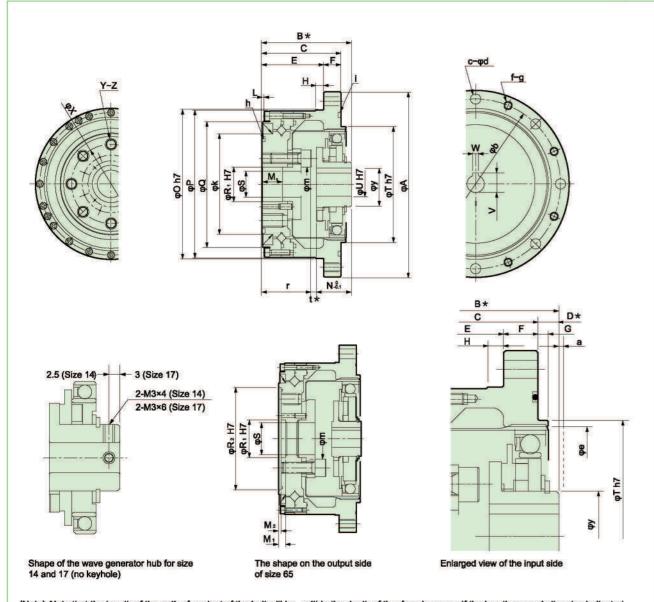
*1 The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline

*2 Contact us for details.

Rating table

Size	Ratio	Rated 1 200	Torque at Orpm	Repe	it for eated Torque		Average rque	Limit for N Peak	fomentary Torque		um Input d (rpm)		Average eed (rpm)		ent of ertia				
		Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Oil lubricant	Grease	Oil lubricant	Grease lubricant	×10 -1kgm²	J ×10 ⁻¹ kgf				
	30	4.0	0.41	9.0	0.92	6.8	0.69	17	1.7					10 1.911					
200	50	5.4	0.55	18	1.8	6.9	0.70	35	3.6	200000000	NAME OF TAXABLE PARTY.		0.0000000	0400000000	20000000				
14	80	7.8	0.80	23	2.4	11	1.1	47	4.8	14000	8500	6500	3500	0.033	0.03				
	100	7.8	0.80	28	2.9	11	1.1	54	5.5										
	30	8.8	0.90	16	1.6	12	1.2	30	3.1			0							
	50	16	1.6	34	3.5	26	2.6	70	7.1						7200				
17	80	22	2.2	43	4.4	27	2.7	87	8.9	10000	7300	6500	3500	0.079	0.08				
	100	24	2.4	54	5.5	39	4.0	108	11		20000	Statistics:	UNIXE OFFICE	STREET, ST	23/25653				
	120	24	2.4	54	5.5	39	4.0	86	8.8										
	30	15	1.5	27	2.8	20	2.0	50	5.1										
	50	25	2.5	56	5.7	34	3.5	98	10										
	80	34	3.5	74	7.5	47	4.8	127	13	CLERK!	552523	0200	5000	0.7000	150 050				
20	100	40	4.1	82	8.4	49	5.0	147	15	10000	6500	6500	3500	0.193	0.19				
	120	40	4.1	87	8.9	49	5.0	147	15	1					-				
	160	40	4.1	92	9.4	49	5.0	147	15										
	30	27	2.8	50	5.1	38	3.9	95	9.7										
	50	39	4.0	98	10	55	5.6	186	19			5600	3500	0.413					
	80	63	6.4	137	14	87	8.9	255	26	7500 5600	7500 5600				NAME OF THE PARTY				
25	100	67	6.8	157	16	108	11	284	29						0.42				
	120	67	6.8	167	17	108	11	304	31	4									
	160	67	6.8	176	18	108	11	314	32										
	30	54	5.5	100	10	75	7.7	200	20	ę.	2	8	9						
	50	76	7.8	216	22	108	11	382	39		4800								
	80	118	12	304	31	167	17	568	58						106150000				
32	100	137	14	333	34	216	22	647	66	7000		4800	4600	3500	1.69	1.7			
	120	137	14	353	36	216	22	686	70										
	160	137	14	372	38	216	22	686	70										
	50	137	14	402	41	196	20	686	70					4.50	4.59				
						0.0000000000000000000000000000000000000	3,000,000												
22	80	206	21	519	53	284	29	980	100		4000	3600	0000						
40	100	265	27	568	58	372	38	1080	110	5600	4000	4000 3600	3000						
	120	294	30	617	63	451	46	1180	120										
	160	294	30	647	66	451	46	1180	120										
	50	176	18	500	51	265	27	950	97										
1110000	80	313	32	706	72	390	40	1270	130						0.000				
45	100	353	36	755	77	500	51	1570	160	5000	3800	3300	3000	8.68	8.86				
	120	402	41	823	84	620	63	1760	180										
	160	402	41	882	90	630	64	1910	195										
	50	245	25	715	73	350	36	1430	146	ž.									
	80	372	38	941	96	519	53	1860	190	4,000	8,22	0000		16-					
50	100	470	48	980	100	666	68	2060	210	4500	3500	3000	2500	12.5	12.8				
	120	529	54	1080	110	813	83	2060	210										
	160	529	54	1180	120	843	86	2450	250	-		e							
	50	176	18	1020	104	18	27	1960	200										
	80	549	56	1480	151	770	79	2450	250	- POSMIANA	100,000,000	30556	PORMERSE	51.08323385	9000000				
58	100	696	71	1590	162	1060	108	3180	325	4000	3000	2700	2200	27.3	27.9				
	120	745	76	1720	176	1190	121	3330	340										
	160	745	76	1840	188	1210	123	3430	350	8		20							
	50	245	25	1420	145	360	27	2830	289	4									
	80	745	76	2110	215	1040	106	3720	380										
65	100	951	97	2300	235	1520	155	4750	485	3500	2800	2400	1900	46.8	47.8				
	120	951	97	2510	256	1570	160	4750	485										
	160	951	97	2630	268	1570	160	4750	485										

(Note) 1. Moment of inertia: $I = \frac{1}{4} GD^2$


2. See "Engineering data" on Page 12 for details of the terms.

Outline Dimensions

You can download the CAD files from our website: www.3fgearbox.com

Fig. 128-1

(Note) Note that the length of the path of contact of the bolt will be within the depth of the female screw. If the length exceeds the size indicated by the symbol, Z, it will damage the flexspline.

Dimensions

Table 129-1 Unit: mm

bol	Size	14	17	20	25	32	40	45	50	58	65
φΑ		73	79	93	107	138	160	180	190	226	260
B*		4100	45 00	45.5 %	52 %	62 %	72.5 %	79.5 %	90 %3	104.5 %	115
С		34	37	38	46	57	66.5	74	85	97	108.5
	CSG Series				100			7			
D*	CSG-LW Series	7 %4	8 %4	7.5 %4	6 %.5	5 %	6 0.6	5.5 %	5 %	7.5 ‰	6.5
U	CSF Series CSF-LW Series	7 0.8	8 0.0	7.5 %	6 4.0	5 4.1	6 4.1	5.5 42	5 %3	7.5 43	6.5
E	COF-LYY Selles	27	29	28	36	45	50.5	58	69	77	84.5
F		7	8	10	10	12	16	16	16	20	24
G		2	2	3	3	3	4	4	4	5	5
	CSG Series	3.5	4	5	5	5	5	6	6	6	6
100	CSG-LW Series	4	4	5	5	4.5	4.5	6	6	6	6
н	CSF Series	3.5	4	5	5	5	5	6	6	6	6
	CSF-LW Series	4	4	5	5	4.5	4.5	6	6	6	6
	CSG Series	0.5	0.5	0.5	0.5	1	1.5	1	1	1.5	1.5
L	CSG-LW Series	1.1	1.1	1.1	1.1	1.2	1.6	1.6	1	1.5	1.5
	CSF Series	0.5	1.1	1.1	1.1	1.2	1.6	1.6	1	1.5	1.5
	CSF-LW Series	1.1	1.1	1.1	1.1	1.2	1.6	1.6	1	1.5	1.5
M1	**	9.4	9.5	9	2	15	5	6	8	10	10
M2		-	-						i i	-	4
	CSG Series CSG-LW Series	18.5	20.7	21.5	21.6	23.6	29.7	30.5	34.8	38.3	44.6
N.å1	CSF Series CSF-LW Series	17.6	19.5	20.1	20.2	22	27.5	27.9	32	34.9	40.9
φO h7		56	63	72	86	113	127	148	158	186	212
	CSG Series	56	62	70	85	112	123	147	157	185	210
C = 1	CSG-LW Series	54.6	61.6	69.6	85	110	124.5	143	155	183.4	208.4
φР	CSF Series	55	62	70	85	112	123	147	157	185	210
	CSF-LW Series	54.6	61.6	69.6	85	110	124.5	143	155	183.4	208.4
	CSG Series	42.5	49.5	58	73	96	109	127	137	161	186
-0	CSG-LW Series	40.5	47.5	55.5	71	91.1	103	123	130	155	180
φQ	CSF Series	42.5	49.5	58	73	96	109	127	137	161	186
	CSF-LW Series	40.5	47.5	55.5	71	91.1	103	123	130	155	180
φR1 H7		11	10	14	20	26	32	32	40	46	52
φR2 H7		1 4	20	(4)	140	25	1/2	(1 5)	-	-	142
φS		8	7	10	15	20	24	25	32	38	44
φT h7		38	48	56	67(68)	90	110	124	135	156	177
φU H7		6	8	12	14	14	14	19	19	22	24
V		-	-	13.8 ta1	16.3 10.1	16.3 50.1	16.3 50.1	21.8 50.1	21.8 00.1	24.8 50.1	27.3
W Js9			-	4	5	5	5	6	6	6	8
φΧ		23	27	32	42	55	68	82	84	100	110
Y		6	6	8	8	8	8	8	8	8	8
Z						M10×15	M10×15	M12×18	M14×21		
1636		M4×8	M5×10	M6×9	M8×12		1/25	1001	14250	M16×24	2000000
a		1	1	1.5	1.5	1.5	2	2	2	2.5	2.5
а фb	0000	1 65	1 71	1.5 82	1.5 96	1.5 125	144	164	174	2.5 206	2.5 236
7.5	CSG Series	1 65 8	1 71 8	1.5 82 8	1.5 96 10	1.5 125 12	144	164 12	174 14	2.5 206 12	2.5 236 8
7.5	CSG-LW Series	1 65 8 6	1 71 8 8	1.5 82 8 8	1.5 96 10 10	1.5 125 12 12	144 10 10	164 12 16	174 14 18	2.5 206 12 16	2.5 236 8 12
φb	CSG-LW Series CSF Series	1 65 8 6 6	1 71 8 8 8	1.5 82 8 8 8	1.5 96 10 10 8	1.5 125 12 12 12	144 10 10 8	164 12 16 12	174 14 18 12	2.5 206 12 16 12	2.5 236 8 12 8
ф	CSG-LW Series	1 65 8 6 6	1 71 8 8 6	1.5 82 8 8 6	1.5 96 10 10 8 10	1.5 125 12 12 12 12 12	144 10 10 8 10	164 12 16 12 16	174 14 18 12 18	2.5 206 12 16 12 16	2.5 236 8 12 8 12
φb c φd	CSG-LW Series CSF Series	1 65 8 6 6 6 4.5	1 71 8 8 6 8	1.5 82 8 8 6 8	1.5 96 10 10 8 10 5.5	1.5 125 12 12 12 12 12 12 6.6	144 10 10 8 10 9	164 12 16 12 16 9	174 14 18 12 18	2.5 206 12 16 12 16 11	2.5 236 8 12 8 12 14
ф	CSG-LW Series CSF Series CSF-LW Series	1 65 8 6 6 6 4.5 38	1 71 8 8 6 8 4.5 45	1.5 82 8 8 6 8 5.5 53	1.5 96 10 10 8 10 5.5 66	1.5 125 12 12 12 12 12 6.6 86	144 10 10 8 10 9 106	164 12 16 12 16 9 119	174 14 18 12 18 9 133	2.5 206 12 16 12 16 11 154	2.5 236 8 12 8 12 14 172
φb c φd	CSG-LW Series CSF Series CSF-LW Series CSG Series	1 65 8 6 6 6 4.5 38 8	1 71 8 8 6 8 4.5 45 8	1.5 82 8 8 6 8 5.5 53 8	1.5 96 10 10 8 10 5.5 66	1.5 125 12 12 12 12 12 6.6 86	144 10 10 8 10 9 106 10	164 12 16 12 16 9 119	174 14 18 12 18 9 133 14	2.5 206 12 16 12 16 11 154	2.5 236 8 12 8 12 14 172 8
φb c φd	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8	1 71 8 8 8 6 8 4.5 45 8 8	1.5 82 8 8 6 8 5.5 53 8	1.5 96 10 10 8 10 5.5 66 10	1.5 125 12 12 12 12 12 6.6 86 12	144 10 10 8 10 9 106 10	164 12 16 12 16 9 119 12 16	174 14 18 12 18 9 133 14	2.5 206 12 16 12 16 11 154 12	2.5 236 8 12 8 12 14 172 8 12
φb c φd φe	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8 6	1 71 8 8 6 8 4.5 45 8 8 6	1.5 82 8 8 6 8 5.5 53 8 8	1.5 96 10 10 8 10 5.5 66 10 10 8	1.5 125 12 12 12 12 12 6.6 86 12 12	144 10 10 8 10 9 106 10 10	164 12 16 12 16 9 119 12 16	174 14 18 12 18 9 133 14 18	2.5 206 12 16 12 16 11 154 12 16 11	2.5 236 8 12 8 12 14 172 8 12 8
φb c φd φe	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8 6 6	1 71 8 8 6 8 4.5 45 8 8 6 8	1.5 82 8 8 6 8 5.5 53 8 8 6	1.5 96 10 10 8 10 5.5 66 10 10 8	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12	144 10 10 8 10 9 106 10 10 8	164 12 16 12 16 9 119 12 16 12 16	174 14 18 12 18 9 133 14 18 12	2.5 206 12 16 12 16 11 154 12 16 11 154 12	2.5 236 8 12 8 12 14 172 8 12 8
φb c φd φe f	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSG-LW Series	1 65 8 6 6 6 4.5 38 6 6 6 6 M4	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 M6	144 10 10 8 10 9 106 10 10 8 10 8	164 12 16 12 16 9 119 12 16 12 16 M8	174 14 18 12 18 9 133 14 18 12 18 M8	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 12	2.5 236 8 12 8 12 14 172 8 12 8 12 8
φb c φd φe f	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 6 M4 29.0×0.50	1 71 8 8 6 8 4.5 45 45 8 8 6 8 8 4.5×0.80	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64*1.14	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 M6 S71	144 10 10 8 10 9 106 10 10 8 10 8 10 M8	164 12 16 12 16 9 119 12 16 12 16 M8 S100	174 14 18 12 18 9 133 14 18 12 18 M8 S105	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135
φb c φd φe f g h i	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 6 6 8 5	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$566	1.5 82 8 8 6 8 5.5 53 8 6 8 6 8 40.64*1.14	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 M6 S71	144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125	164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145	174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205
φb c φd φe f g h i φk	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 6 6 9.0×0.50 \$50	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38	1.5 82 8 8 6 8 5.5 53 8 6 8 6 8 40.64*1.14 \$\$67 45	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 M6 S71 S105	144 10 10 8 10 9 106 10 10 8 10 M8 ASS68-042 S125 90	164 12 16 12 16 9 119 12 16 12 16 M8 \$100 \$145	174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180 135	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S138 S208
φb c φd φe f g h i φk φm	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSG-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 6 4.5 38 38 38 38 10	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5	1.5 82 8 8 6 8 5.5 53 8 6 8 6 8 40.64×1.14 S67 45	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 12 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	144 10 10 8 10 9 106 10 10 8 10 M8 ASS68-042 S125 90	164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145 107 36	174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112 39	2.5 206 12 16 12 16 11 154 12 16 12 16 M10 S125 S180 135 46	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155
φb c φd φe f g h i φk	CSG-LW Series CSF Series CSF-LW Series CSG Series CSG-LW Series CSF-LW Series CSF-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 6 6 9.0×0.50 \$50	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38	1.5 82 8 8 6 8 5.5 53 8 6 8 6 8 40.64*1.14 \$\$67 45	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 M6 S71 S105	144 10 10 8 10 9 106 10 10 8 10 M8 ASS68-042 S125 90	164 12 16 12 16 9 119 12 16 12 16 M8 \$100 \$145	174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180 135	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155
φb c φd φe f g h i φk φm	CSG-LW Series CSF Series CSG-LW Series CSG-LW Series CSG-LW Series CSF-LW Series CSF-LW Series CSF-LW Series CSF-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 8 M4 29.0×0.50 S50 31 10 21.4	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64*1.14 \$67 45 15.5	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29	1.5 125 12 12 12 12 6.6 86 12 12 12 12 12 M6 S71 S105 78 27	144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5	164 12 16 12 16 9 119 12 16 12 16 M8 \$100 \$145 107 36 45.5	174 14 18 12 18 9 133 14 18 12 18 M8 5105 5155 112 39 53	2.5 206 12 16 12 16 11 154 12 16 12 16 M10 S125 S180 135 46 62.8	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155 56
φb c φd φe f g h i φk φm r	CSG-LW Series CSF Series CSF-LW Series CSG-LW Series CSG-LW Series CSF-LW Series CSF-LW Series CSF-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 M4 29.0×0.50 \$50 31 10 21.4	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5 0.8	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 S67 45 15.5 23 1	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4	1.5 125 12 12 12 12 6.6 86 12 12 12 12 12 12 12 12 17 17 18 105 78 27 37	144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	164 12 16 12 16 9 119 12 16 12 16 12 16 M8 \$100 \$145 107 36 45.5 3.5	174 14 18 12 18 9 133 14 18 12 18 M8 \$105 \$155 112 39 53 2.2	2.5 206 12 16 12 16 11 154 12 16 12 16 M10 S125 S180 135 46 62.8 3.4	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 56 66.5 3.9
φb c φd φe f g h i φk φm r	CSG-LW Series CSF Series CSF-LW Series CSG-LW Series CSG-LW Series CSF-LW Series CSF-LW Series CSF-LW Series CSG-LW Series CSG-LW Series CSG-LW Series CSF-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 8 M4 29.0×0.50 S50 31 10 21.4 1.1	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5 0.8 2	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64*1.14 \$67 45 15.5 23 1	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4 2.8 26	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 12 12 17 18 105 78 27 37 1.4	144 10 10 8 10 9 106 10 10 8 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	164 12 16 12 16 9 119 12 16 12 16 12 16 12 16 M8 S100 S145 107 36 45.5 3.5	174 14 18 12 18 9 133 14 18 12 18 18 12 18 12 18 12 18 22 18 39 53 2.2 5	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180 135 46 62.8 3.4 6.8	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155 56 66.5 3.9
φb c φd φe f g h i φk φm r	CSG-LW Series CSF Series CSF-LW Series CSG-LW Series CSG-LW Series CSF-LW Series CSF-LW Series CSF-LW Series CSG-LW Series CSG-LW Series CSG-LW Series CSF-LW Series CSF-LW Series	1 65 8 6 6 6 6 4.5 38 8 6 6 6 6 M4 29.0×0.50 S50 31 10 21.4 1.1 2 14 0.52	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5 0.8 2 18 0.68	1.5 82 8 8 8 6 8 5.5 53 8 8 6 8 M5 40.64*1.14 \$67 45 15.5 23 1	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4 2.8 26 1.5	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 12 12 17 105 78 27 37 1.4	144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3 5.5	164 12 16 12 16 9 119 12 16 12 16 12 16 12 16 M8 S100 S145 107 36 45.5 3.5 6.1 32 7.0	174 14 18 12 18 9 133 14 18 12 18 18 12 18 18 12 18 39 5155 112 39 53 2.2 5	2.5 206 12 16 12 16 11 154 12 16 12 16 M10 S125 S180 135 46 62.8 3.4 6.8	2.5 236 8 12 8 12 14 172 8 12 8 12 8 12 8 12 5135 5205 155 56 66.5 7.6
φb c φd φe f g h i φk φm r	CSG-LW Series CSF Series CSF-LW Series CSG-LW Series CSG-LW Series CSF-LW Series CSF-LW Series CSF-LW Series CSG-LW Series CSG-LW Series CSG-LW Series CSF-LW Series	1 65 8 6 6 6 4.5 38 8 6 6 6 8 M4 29.0×0.50 S50 31 10 21.4 1.1	1 71 8 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5 0.8 2	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64*1.14 \$67 45 15.5 23 1	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4 2.8 26	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 12 12 17 18 105 78 27 37 1.4	144 10 10 8 10 9 106 10 10 8 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	164 12 16 12 16 9 119 12 16 12 16 12 16 12 16 M8 S100 S145 107 36 45.5 3.5	174 14 18 12 18 9 133 14 18 12 18 18 12 18 12 18 12 18 22 18 39 53 2.2 5	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180 135 46 62.8 3.4 6.8	236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155 56 66.5 3.9

(note1) the dimension in parenthesis is for reduction ratio 30.

- *The B, D, and t values indicate relative position of individual gearing components (wave generator, flexspline, circular spline). Please strictly adhere to these values when designing your housing and mating parts.
- Wave generator is removed when the product is delivered.
- . CSF & CSG-LW available in sizes 14 to 45.

-23--24-

^{*} The shape of the output flange may vary depending on the size. Contact us for details. * Check the confirmation drawing for de tails of the sizes.

* See Fig. 040-3 on Page 40 for the shapes of the wave generator. The dimension tolerances that are not specified vary depending on the manufacturing method.

Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing.

Positionir	ng accuracy	Se	ee "Engineering data	a" for a description o	f terms.	J	Table 150-1 Jnt: X10 ⁴ rad (arc·min)
Ratio	Size Specification	14	17	20	25	32	40 to 65
	Standard	5.8	4.4	4.4	4.4	4.4	=
30	product	(2)	(1.5)	(1.5)	(1.5)	(1.5)	1
30	Special		-	2.9	2.9	2.9	8-3
	product	2 <u></u> 2		(1)	(1)	(1)	3-3
	Standard	4.4	4.4	2.9	2.9	2.9	2.9
<u>@25</u> 000000000000000000000000000000000000	product	(1.5)	(1.5)	(1)	(1)	(1)	(1)
50 or more	Special	2.9	2.9	1.5	1.5	1.5	1.5
	product	(1)	(1)	(0.5)	(0.5)	(0.5)	(0.5)

Hyster	lysteresis loss See "Engineering data" for a description of terms.											
Ratio	Size	14	17	20	25	32	40 or more					
	×10 ⁻⁴ rad	8.7	8.7	8.7	8.7	8.7	-					
30	are min	3.0	3.0	3.0	3.0	3.0	-					
FO	×10°frad	5.8	5.8	5.8	5.8	5.8	5.8					
50	arc min	2.0	2.0	2.0	2.0	2.0	2.0					
80 or	×10 ⁻⁴ rad	2.9	2.9	2.9	2.9	2.9	2.9					
more	arc min	1.0	1.0	1.0	1.0	1.0	1.0					

	240		a Realist San			cription of ten		25		5	Table 150
Ratio	Size	14	17	20	25	32	40	45	50	58	65
30	×10 ⁻⁵ rad	29.1	16.0	13.6	13.6	11.2	(<u>—</u>	_	100	23—4	_
30	arc sec	60	33	28	28	23	9 -3	-	60m	115-115	-
50	×10 ⁻⁶ rad	17.5	9.7	8.2	8.2	6.8	6.8	5.8	5.8	4.8	4.8
50	arc sec	36	20	17	17	14	14	12	12	10	10
80	×10 ⁻⁵ rad	11.2	6.3	5.3	5.3	4.4	4.4	3.9	3.9	2.9	2.9
80	arc sec	23	13	11	11	9	9	8	8	6	6
400	×10 ⁻⁵ rad	8.7	4.8	4.4	4.4	3.4	3.4	2.9	2.9	2.4	2.4
100	arc sec	18	10	9	9	7	7	6	6	5	5
400	×10 ⁻⁵ rad		3.9	3.9	3.9	2.9	2.9	2.4	2.4	1.9	1.9
120	arc sec		8	8	8	6	6	5	5	4	4
400	×10 ⁻⁵ rad	_	5 	2.9	2.9	2.4	2.4	1.9	1.9	1.5	1.5
160	arc sec	_	15-5	6	6	5	5	4	4	3	3

				OCC LI	iginooning de	ata" for a des	onpuon or to	iiio.				Table 150-
Symbol	-	Size	14	17	20	25	32	40	45	50	58	65
	Т	Nm	2.0	3.9	7.0	14	29	54	76	108	168	235
	11	kgfm	0.20	0.40	0.70	1.4	3.0	5.5	7.8	11	17	24
	Ta	Nm	6.9	12	25	48	108	196	275	382	598	843
	12	kgfm	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	Kı	×10 ⁴ Nm/rad	0.19	0.34	0.57	1.0	2.4	- X	() - 1 4	=26	-	=
	N.	kgfm/arc min	0.056	0.10	0.17	0.30	0.70	=	-	==	— 8	:
	K	×10 ⁴ Nm/rad	0.24	0.44	0.71	1.3	3.0	5 26	<u>n=</u> 3:	===		8-2
	1/12	kgfm/arc min	0.07	0.13	0.21	0.40	0.89	8=>:	(<u>2</u>	===	12-3	8_2
	K	×10 ⁴ Nm/rad	0.34	0.67	1.1	2.1	4.9	<u> </u>	10 1 - 1 0		()	13
Reduction	N	kgfm/arc min	0.10	0.20	0.32	0.62	1.5	-	12-30	-2	972-V	-
ratio	0	×10 ⁻⁴ rad	10.5	11.5	12.3	14	12.1	- 01	-	-	-	:
30		arc min	3.6	4.0	4.1	4.7	4.3	-	() - (-	-
	8	×10 ⁻⁺ rad	31	30	38	40	38) -	_	-01	1 4 71	-
	200	arc min	10.7	10.2	12.7	13.4	13.3		07-34		10-16	-
	Kı	×10 ⁴ Nm/rad	0.34	0.81	1.3	2.5	5.4	10	15	20	31	44
	TV1	kgfm/arc min	0.1	0.24	0.38	0.74	1.6	3.0	4.3	5.9	9.3	13
	K.	×10 ⁴ Nm/rad	0.47	1.1	1.8	3.4	7.8	14	20	28	44	61
	N2	kgfm/arc min	0.14	0.32	0.52	1.0	2.3	4.2	6.0	8.2	13	18
Reduction	K	×10 ⁴ Nm/rad	0.57	1.3	2.3	4.4	9.8	18	26	34	54	78
ratio 50	N	kgfm/arc min	0.17	0.4	0.67	1.3	2.9	5.3	7.6	10	16	23
	8	×10 ⁻⁴ rad	5.8	4.9	5.2	5.5	5.5	5.2	5.2	5.5	5.2	5.2
	4	arc min	2.0	1.7	1.8	1.9	1.9	1.8	1.8	1.9	1.8	1.8
	8	×10 ⁻⁴ rad	16	12	15.4	15.7	15.7	15.4	15.1	15.4	15.1	15.1
	•	arc min	5.6	4.2	5.3	5.4	5.4	5.3	5.2	5.3	5.2	5.2

^{*} The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

Symbol	_	Size	14	17	20	25	32	40	45	50	58	65
	-	Nm	2.0	3.9	7.0	14	29	54	76	108	168	235
	T ₁	kgfm	0.20	0.40	0.70	1.4	3.0	5.5	7.8	11	17	24
	Tz	Nm	6.9	12	25	48	108	196	275	382	598	843
	12	kgfm	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K	×10 ⁴ Nm/rad	0.47	1	1.6	3.1	6.7	13	18	25	40	54
	IN:	kgfm/arc min	0.14	0.3	0.47	0.92	2.0	3.8	5.4	7.4	12	16
	K	×10 ⁴ Nm/rad	0.61	1.4	2.5	5.0	11	20	29	40	61	88
	N ₂	kgfm/arc min	0.18	0.4	0.75	1.5	3.2	6.0	8.5	12	18	26
	K	×10 ⁴ Nm/rad	0.71	1.6	2.9	5.7	12	23	33	44	71	98
ratio	N	kgfm/arc min	0.21	0.46	0.85	1.7	3.7	6.8	9.7	13	21	29
80 or	8	×10 ⁻⁴ rad	4.1	3.9	4.4	4.4	4.4	4.1	4.1	4.4	4.1	4.4
more	9	arc min	1.4	1.3	1.5	1.5	1.5	1.4	1.4	1.5	1.4	1.5
		×10 ⁻⁴ rad	12	9.7	11.3	11.1	11.6	11.1	11.1	11.1	11.1	11.3
	6	arc min	4.2	3.3	3.9	3.8	4.0	3.8	3.8	3.8	3.8	3.9

^{*} The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

3.8

3.1

100

Size	14	17	20	25	32	40	45	50	58	65
50	4.5	6.7	8.6	17	34	61	85	_	_	-
80	3.1	4.4	5.4	10	21	39	54	73	108	154
100	2.8	3.7	4.7	8.8	20	34	47	64	97	132
120		3.4	4.2	8.0	17	31	43	57	88	121
160	1-1	-	3.6	6.9	15	26	36	50	75	102
CSF Series										Table 1 Unit: N
Size	14	17	20	25	32	40	45	50	58	65
30	6.4	9.3	15	25	54	-	-	_		
50	4.1	6.1	7.8	15	31	55	77	110	160	220

CSG Series		use c	onditions, use th	em as reference	e values.		-			Table 15%
Size	14	17	20	25	32	40	45	50	58	65
50	1.8	3.3	5.2	9.9	20	36	52	5 	50 B)	-
80	1.8	3.3	5.3	10	21	36	53	69	106	154
100	2	3.6	5.6	11	22	40	56	75	121	165
120	34-4	3.9	6.1	12	24	43	61	80	121	176
									1.0	400
160		_	7	14	29	51	70	94	143	198 Table 150
CSF Series	14	17	20	25	32	40	45	50	143	CONTROL CONTROL
CSF Series	14	17 3.8	20 6.2		PERMANEN	355550		57081		Table 150
CSF Series Size	19			25	32	40	45	57081		Table 150 Unit: 65
CSF Series Size	2.4	3.8	6.2	25 11	32 23	40	45	50	58	Table 150; Unit: 65
CSF Series Size 30 50	2.4	3.8	6.2 4.7	25 11 9	32 23 18	40 — 33	45 — 47	50 — 62	58 — 95	Table 150; Unit: 65 —
CSF Series Size 30 50 80	2.4 1.6 1.6	3.8 3 3	6.2 4.7 4.8	25 11 9 9.1	32 23 18 19	40 — 33 33	45 — 47 48	50 — 62 63	58 — 95 96	Table 150 Unit: 65 — 130 140

28 24

33

Ratcheting torq	ue s	ee "Enginee	ering data" f	or a descrip	tion of terms	3.				
 CSG Series 			S 11							Table 132- Unit: Nn
Size Ratio	14	17	20	25	32	40	45	50	58	65
50	110	190	280	580	1200	2300	3500	_	-	_
80	140	260	450	880	1800	3600	5000	7000	10000	14000
100	100	200	330	650	1300	2700	4000	5300	8300	12000
120		150	310	610	1200	2400	3600	4900	7500	10000

1200

CSF Series			-		-					Table 132 Unit; N
Size	14	17	20	25	32	40	45	50	58	65
30	59	100	170	340	720			_	<u></u>	==:
50	88	150	220	450	980	1800	2700	3700	5800	7800
80	110	200	350	680	1400	2800	3900	5400	8200	11000
100	84	160	260	500	1000	2100	3100	4100	6400	9400
120	-	120	240	470	980	1900	2800	3800	5800	8300
160	12-0	_	220	450	980	1800	2600	3600	5600	8000

CSG Series										Table 13: Unit: N
Size	14	17	20	25	32	40	45	50	58	65
Total reduction ratio	260	500	800	1700	3500	6700	8900	12200	19000	26600
CSF Series										Table 13 Unit:
Size	14	17	20	25	32	40	45	50	58	65
						No.				17000

No-load running torque

No load running torque indicates the torque which is needed to rotate input of the gear, "Wave Generator", with no load on the output side (low speed side).

		Ra	itio
	G Waterway	Number	Harmonic Grease SK-1A
Lubricant	Grease lubrication	Name	Harmonic Grease SK-2
	Iddication	Quantity	Recommended quantity

^{*} Contact us for oil lubrication.

■ Compensation Value in Each Ratio

No-load running torque of the gear varies with ratio. The graphs indicate a value for ratio 100. For other gear ratios, add the compensation values from table on the right.

compensat	ion valu	e for no-	load runn	ing torque
-----------	----------	-----------	-----------	------------

3300

4600

7200

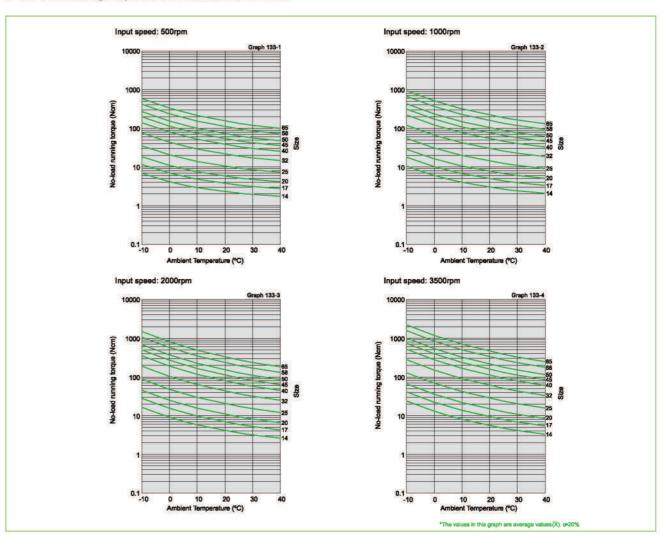

10000

Table 132-6 Unit: Ncm

2300

Ratio Size	30	50	80	120	160
14	2.5	1.1	0.2	_	×
17	3.8	1.6	0.3	-0.2	
20	5.4	2.3	0.5	-0.3	-0.8
25	8.8	3.8	0.7	-0.5	-1.2
32	16	7.1	1.3	-0.9	-2.2
40	_	12	2.1	-1.5	-3.5
45	-	16	2.9	-2.1	-4.9
50	_	21	3.7	-2.6	-6.2
58	==	30	5.3	-3.8	-8.9
65	_	41	7.2	-5.1	-12

■ No-load running torque for a reduction ratio of 100:1

Efficiency

The efficiency varies depending on the following conditions.

- Reduction ratio
- Input rotational speed
- Load torque ■ Temperature
- Lubrication (Type and quantity)

■ Efficiency compensation coefficient

If the load torque is lower than the rated torque, the efficiency will be lower. Calculate the compensation coefficient Ke from Graph 134-1 to calculate the efficiency using the following example.

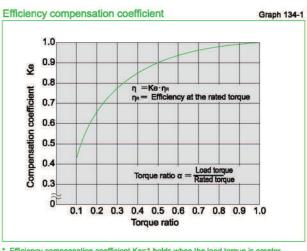
Calculation Example

Efficiency $\eta\,$ (%) under the following condition is calculateed from the example of CSF-20-80-2A-GR.

Input rotational speed: 1000 rpm

Load torque: 19.6 Nm

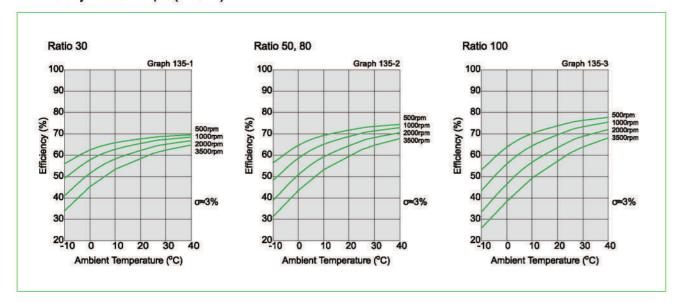
Lubrication: Grease lubrication (Harmonic Grease SK-1A)

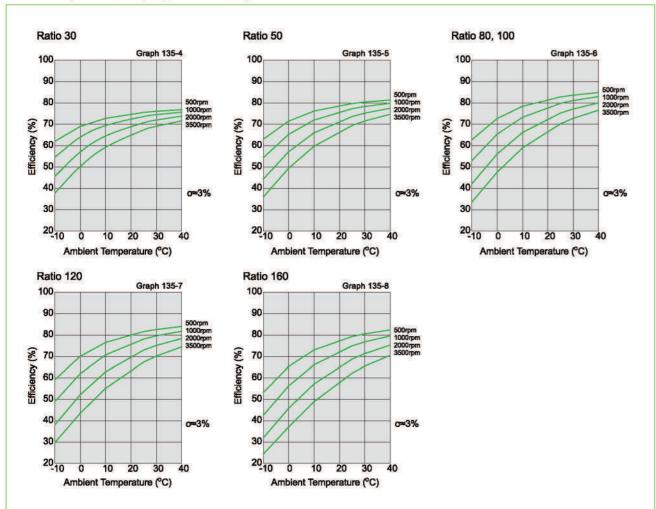

Lubricant temperature: 20°C

Since the rated torque of size 20 with a reduction ratio of 80 is 34 Nm (Ratings: Page 127), the torque ratio α is 0.58.

(a =19.6/34=0.58)

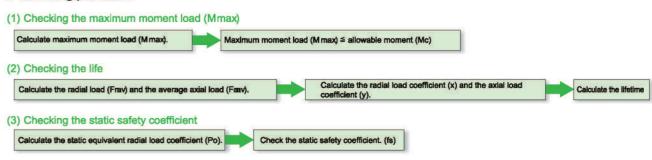
- The efficiency compensation coefficient is Ke=0.93 from Graph 134-1.
- Efficiency η at load torque 19.6 Nm: η=Ke ·ηR=0.93 x 78=73%




Efficiency compensation coefficient Ke=1 holds when the load torque is greater than the reted torque.

-27-

■ Efficiency at rated torque (Size 14)


■ Efficiency at rated torque (Sizes 17 to 65)

Checking output bearing

A precision cross roller bearing is built in the unit type to directly support the external load (output flange). Check the maximum moment load, life of the bearing and static safety coefficient to fully bring out the performance of the unit type. See Pages 30 to 34 of "Engineering data" for each calculation formula.

■ Checking procedure

Output bearing specifications

The specifications of the cross roller are shown in Table 136-1.

Specifications CSG Series/CSF Series

	Pitch circle dia. of a roller	Offset		Basic rat	ted load		Allow		Moment	stiffness
Size	dp		Basic dynam		Basic static C		mome M		×10 ⁴ Nm/rad	kgfm/ arc mir
	m		×10 ² N	kgf	×10 ² N	kgf	Nm	kgfm	- 3/70	
14	0.035	0.0095	47	480	60.7	620	41	4.2	4.38	1.3
17	0.0425	0.0095	52.9	540	75.5	770	64	6.5	7.75	2.3
20	0.050	0.0095	57.8	590	90.0	920	91	9.3	12.8	3.8
25	0.062	0.0115	96.0	980	151	1540	156	16	24.2	7.2
32	0.080	0.013	150	1530	250	2550	313	32	53.9	16
40	0.096	0.0145	213	2170	365	3720	450	46	91.0	27
45	0.111	0.0155	230	2350	426	4340	686	70	141	42
50	0.119	0.018	348	3550	602	6140	759	77	171	51
58	0.141	0.0205	518	5290	904	9230	1180	120	283	84
65	0.160	0.0225	556	5670	1030	10500	1860	190	404	120

- * Basic dynamic rated load is a constant radial load where the basic dynamic rated life of CRB is 1 x 106 rotations.
- * Basic static rated load is a static load where the value of moment rigidity is the average value.

* The value of the moment stiffness is the average value.

Recommended Tolerances for Assembly

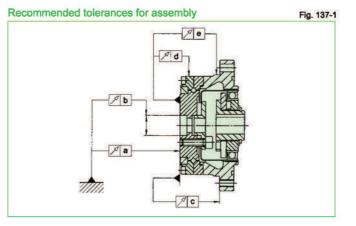
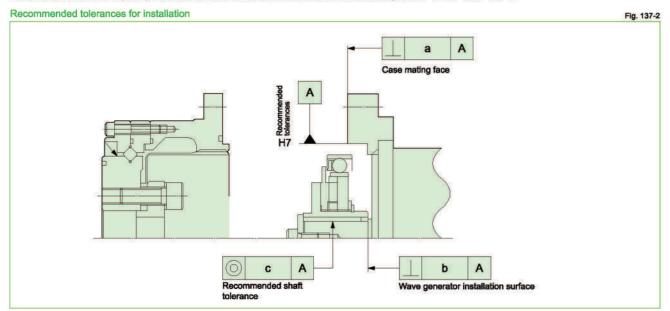


Table 137-1


Size Symbol	14	17	20	25	32	40	45	50	58	65
а	0.010	0.010	0.010	0.015	0.015	0.015	0.018	0.018	0.018	0.018
b	0.010	0.012	0.012	0.013	0.013	0.015	0.015	0.015	0.017	0.017
C	0.024	0.026	0.038	0.045	0.056	0.060	0.068	0.069	0.076	0.085
d	0.010	0.010	0.010	0.010	0.010	0.015	0.015	0.015	0.015	0.015
е	0.038	0.038	0.047	0.049	0.054	0.060	0.065	0.067	0.070	0.075

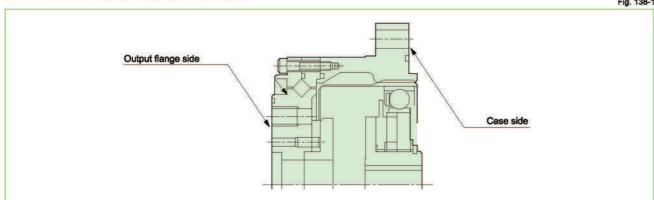
-29-

Design Guide -

Installation accuracy

For peak performance of your gear, maintain the recommended tolerances shown in Figure 137-1 and Table 137-1.

Recommended Tolerances for Assembly


Table 137-2

Size Symbol	14	17	20	25	32	40	45	50	58	65
a	0.011	0.015	0.017	0.024	0.026	0.026	0.027	0.028	0.031	0.034
	0.017	0.020	0.020	0.024	0.024	0.032	0.032	0.032	0.032	0.032
D	(800.0)	(0.010)	(0.010)	(0.012)	(0.012)	(0.012)	(0.013)	(0.015)	(0.015)	(0.015)
2	0.030	0.034	0.044	0.047	0.050	0.063	0.065	0.066	0.068	0.070
C	(0.016)	(0.018)	(0.019)	(0.022)	(0.022)	(0.024)	(0.027)	(0.030)	(0.033)	(0.035)

^{*} The value in the parentheses indicates that input (wave generator) is a solid wave generator.

Installation and transmission torque

Fig. 138-1

CSG series: Installation of output flange side and transmission torque

Table 138-1

Item	Size	14	17	20	25	32	40	45	50	58	65
Number of bo	lts	6	6	8	8	8	8	8	8	8	8
Bolt size		M4	M5	M6	M8	M10	M10	M12	M14	M16	M16
Pitch circle	mm	23	27	32	42	55	68	82	84	100	110
Clamp torque	Nm	5.4	10.8	18.4	45	89	89	154	246	383	383
Torque transmission capacity (bolt only)	Nm	58	109	245	580	1220	1510	2624	3690	5981	6579

CSG series: Installation of case side and transmission torque

			Alternative state of the state of the	AND THE RESERVE OF THE PARTY OF							Tubic 100
Item	Size	14	17	20	25	32	40	45	50	58	65
Number of bo	ilts	8	8	8	10	12	10	12	14	12	8
Bolt size	j.	M4	M4	M5	M5	M6	M8	M8	M8	M10	M12
Pitch circle	mm	65	71	82	96	125	144	164	174	206	236
Clamp torque	Nm	4.5	4.5	9.0	9.0	15.3	37	37	37	74	128
Torque transmission capacity (bolt only)	Nm	182	196	365	538	1200	2100	2844	3251	5717	6293

(Table 138-1, 138-2/Notes)

- 1. The material of the thread must withstand the clamp torque.
- 2. Recommended bolt: JIS B 1176 socket head cap screw / Strength range: JIS B 1051 over 12.9.
- 3. Torque coefficient: K=0.2
- 4. Clamp coefficient: A=1.4
- 5. Tightening friction coefficient µ=0.15

CSF series: Bolt connection to output flange and resulting transmission torque

Ta	-	-	4	2	0	

Table 138-2

Item	Size	14	17	20	25	32	40	45	50	58	65
Number of bo	lts	6	6	8	8	8	8	8	8	8	8
Bolt size		M4	M5	M6	M8	M10	M10	M12	M14	M16	M16
Pitch circle	mm	23	27	32	42	55	68	82	84	100	110
Clamp torque	Nm	4.5	9	15.3	37	74	74	128	205	319	319
Torque transmission capacity (bolt only)	Nm	49	91	204	486	1108	1258	2200	3070	4980	5480

CSF series: Bolt connection to output flange and resulting transmission torque

Table 139-2

Item	Size	14	17	20	25	32	40	45	50	58	65
Number of bo	olts	6	6	6	8	12	8	12	12	12	8
Bolt size		M4	M4	M5	M5	M6	M8	M8	M8	M10	M12
Pitch circle	mm	65	71	82	96	125	144	164	174	206	236
Clamp torque	Nm	4.5	4.5	9.0	9.0	15.3	37	37	37	74	128
Torque transmission capacity (bolt only)	Nm	137	147	274	431	1200	1680	2860	3040	5670	6310

(Table 139-1, 139-2/Notes)

- 1. The material of the thread must withstand the clamp torque.
- 2. Recommended bolt: JIS B 1176 socket head cap screw / Strength range: JIS B 1051 over 12.9.
- 3. Torque coefficient: K=0.2
- 4. Clamp coefficient: A=1.4
- 5. Tightening friction coefficient μ=0.15

■ Precautions on installing the load to the output flange (Sizes 14 to 25)

As the distance (see the size symbol "L" in Figure 128-1 of Page 128) between the oil seal on the output flange periphery and the edge output flange (rotor) is short for the gear units sizes 14, 17, 20 and 25, the load may interfere with the oil seal. Produce a design so that the load cannot be applied to the oil seal.

Installation of a motor

Motor mounting flange

A motor mounting flange is required for installing a motor. The recommended size and precision of the basic part of the motor mounting flange is shown in Table 140-1.

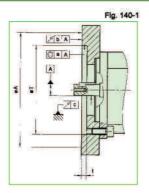
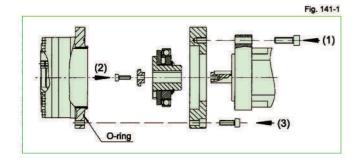
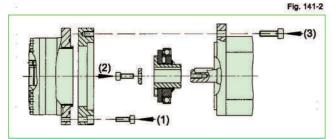


Table 140-1 Unit: mm


Size Symbol	14	17	20	25	32	40	45	50	58	65
а	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05
b	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05
C	0.015	0.015	0.018	0.018	0.018	0.018	0.021	0.021	0.021	0.021
φΑ	73	79	93	107	138	160	180	190	226	260
t	3	3	4.5	4.5	4.5	6	6	6	7.5	7.5
φΤ	38H7	48H7	56H7	67H7	90H7	110H7	124H7	135H7	156H7	177H7

Installation procedure

As shown in Figures 141-1 and 141-2, there are two basic procedures to install a motor. Select the installation procedure by the diameter of the pilot hole on the motor mounting surface. Table 141-1 shows the selection standard by the diameter of the pilot hole on the motor mounting surface.


Table 141-1

Size	14	17	20	25	32	40	45	50	58	65	Reference drawing for installation
The dia. of the pilot hole on	<35.5	<43.5	<50.0	<62.5	<81.5	<100.0	<113.5	<124.5	<147	<167	Installation procedure-1 (Fig. 141-1)
the motor mounting surface	≧35.5	≧43.5	≥ 50.0	≧62.5	≧81.5	≥ 100.0	≥113.5	≥124.5	≥147	≥167	Installation procedure-2 (Fig. 141-2)

Installation procedure-1

- (1) Install the mounting flange on the motor mounting surface.
- (2) Install a wave generator on the motor output shaft.
- (3) Install the main unit.

Installation procedure-2 -

- (1) Install the mounting flange on the main unit.
- (2) Install a wave generator on the motor output shaft.
- (3) Install the mounting flange (main unit) on the motor mounting

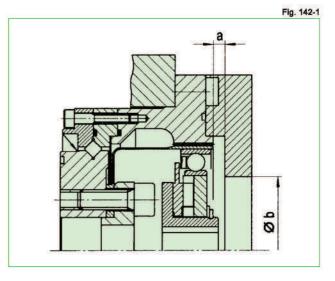
Precautions on assembly

It is extremely important to assemble the gear accurately, in proper sequence. Perform assembly based on the following precautions.

Precautions regarding the wave generator

- Avoid applying undue axial force to the wave generator during installation. Rotating the wave generator bearing while insert ing it is recommended and will ease the process.
- If the wave generator does not have an Oldham coupling, ext ra care must be given to ensure that concentricity and inclination are within the specified limits (see "Installation accuracy" of each series on Page 137).

Other precautions


- 1. Is the flatness of the mounting surface poor or distorted?
- Is any embossment of the screw hole area, burr or trapped foreign matter found?
- 3. Have chamfering and relief working of the corner been performed to prevent interference with the area of installation of the unit?

Although Harmonic Drive® gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.

Lubrication

Grease lubrication is standard for the CSF/CSG gear units. Harmonic Grease SK-2 is for sizes 14 and 17, and Harmonic Grease SK-1A is for sizes 20 to 65 (Harmonic Grease 4B No.2 for the cross roller bearing). Harmonic Grease 4B No.2 is also available for long-life and for use in a wide temperature range. (see "Engineering data" for the specifications of the grease).

See table below for recommended housing dimensions. These dimensions must be maintained to prevent damage to the gear and to maintain a proper grease cavity.

Recommended housing dimensions

Trocommonaca noa	Size 44 47 20 25 20 40 45 50 50 65												
Size Symbol	14	17	20	25	32	40	45	50	58	65			
a*	1	1	1.5	1.5	1.5	2	2	2	2.5	2.5			
a**	3	3	4.5	4.5	4.5	6	6	6	7.5	7.5			
φb	16	26	30	37	37	45	45	45	56	62			

^{*} Horizontal and vertical: when the wave generator is below

Other precautions

Fill the gap between the wave generator and the input cover (motor flange) with grease to use the wave generator facing upward or downward (see Figure 048-3 on Page 48).

Sealing

Sealing is needed to maintain the high durability of the gear and prevent grease leakage

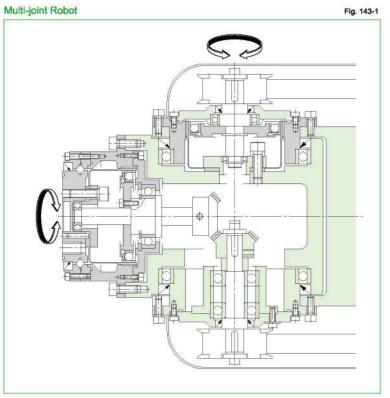
Rotating Parts	Oil seal (with a spring). Surface should be smooth (no scratches)
Mating flange	O-ring and seal adhesive. Take care regarding distortion on the plane and how the O-ring is engaged.
Screw hole area	Screws should have a thread lock (LOCKTITE 242 is recommended) or seal adhesive.

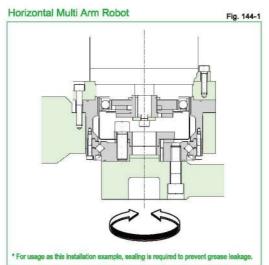
(Note) If you use Harmonic Grease 4BNo.2, strict sealing is required.

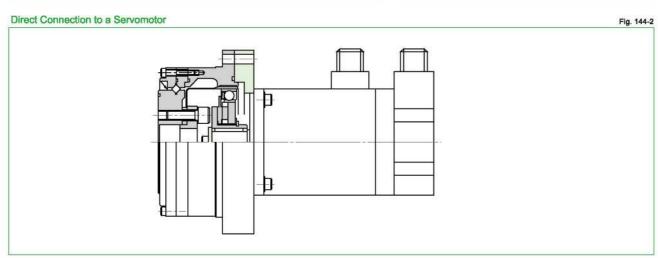
Sealing area and the recommended sealing method for the unit type

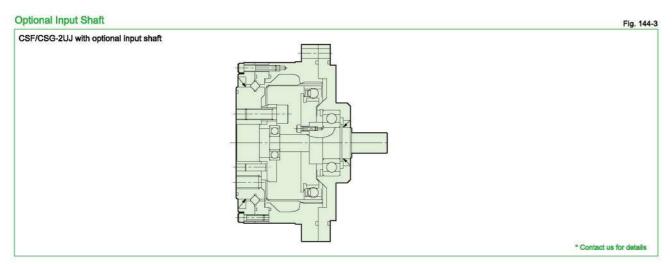
Table 142-2

Table 142-1


Α	rea requiring sealing	Recommended sealing method
Output	Pass-through hole in the center of the output flange and the output flange mating face	Use O-ring (supplied with product)
side	Spanner screw area	Screw lock agent with sealing effect (LOCTITE® 242 is recommended)
	Flange mating face	Use O-ring (supplied with product)
Input side	Motor output shaft	Please select a motor which has ar oil seal on the output shaft.


Rust prevention


Although Harmonic Drive® gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.


^{**} Vertical: when the wave generator is above

Application -

Features —

SHG/SHF series gear units

The SHG/SHF series gear unit is an easy-to-use gearhead solution. An accurate, highly rigid cross roller bearing is built in to directly support the external load.

Features -

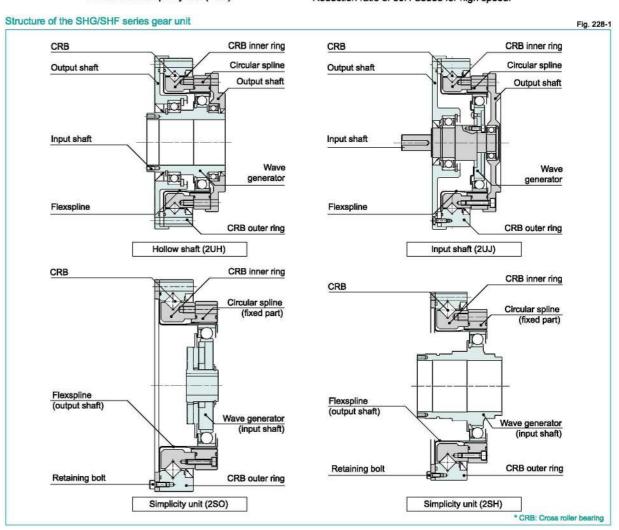
- Zero backlash
- Large bore with hollow through hole
- Input shaft option available
- Flat shape, compact and simple design
- High-torque capacity
- High stiffness
- High-positional and rotational accuracies
- Coaxial input and output

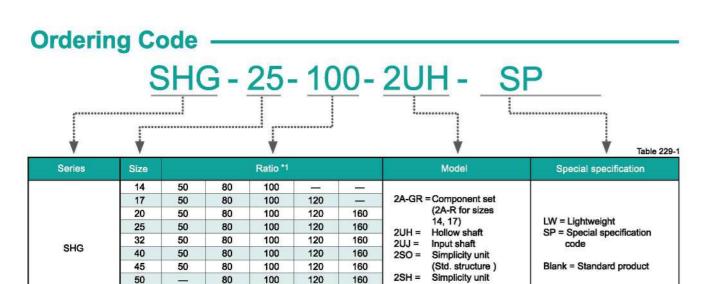
Configurations

The SHG/SHF gearheads are available in 4 variations allowing the customer to choose the best configuration for their application.

- Large-diameter hollow shaft: (2UH)
- Input shaft (2UJ)
- Easier to use: Simplicity unit (2SO)

Hollow shaft simplicity unit (2SH)


Serie


SHG: high torque

- Torque capacity has been improved by 30% compared to the SHF series.
- The life has been improved by 43% (10,000 hours) compared to the SHF series.

SHF: standard torque

Reduction ratio of 30:1 added for high speed.

160

160

(Hollow shaft)

120

120

100

100

80

80

Technical Data -

65

799				200	
Ra	7.1	D/G	ta	ា	A
	31.1	III C	25.00	100	lv.

SHG series

Size	Ratio	Rated to 2000		Limi repeate tord	d peak	Limi average		Limit for make to peak to		Maximu speed		Limit for input spe	
		Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Oil lubricant	Grease lubricant	Oil lubricant	Great
	50	7.0	0.7	23	2.3	9	0.9	46	4.7				
14	80	10	1.0	30	3.1	14	1.4	61	6.2	14000	8500	6500	350
	100	10	1.0	36	3.7	14	1.4	70	7.2	1			
	50	21	2.1	44	4.5	34	3.4	91	9				
	80	29	2.9	56	5.7	35	3.6	113	12	1			
17	100	31	3.2	70	7.2	51	5.2	143	15	10000	7300	6500	350
	120	31	3.2	70	7.2	51	5.2	112	11				
	50	33	3.3	73	7.4	44	4.5	127	13				
	80	44	4.5	96	9.8	61	6.2	165	17	1			
20	100	52	5.3	107	10.9	64	6.5	191	20	10000	6500	6500	350
	120	52	5.3	113	11.5	64	6.5	191	20		2500000	5.000000000	1000000
	160	52	5.3	120	12.2	64	6.5	191	20	1			
	50	51	5.2	127	13	72	7.3	242	25				
	80	82	8.4	178	18	113	12	332	34	1			
25	100	87	8.9	204	21	140	14	369	38	7500	5600	5600	350
	120	87	8.9	217	22	140	14	395	40			NAME AND	
	160	87	8.9	229	23	140	14	408	42	1			
	50	99	10	281	29	140	14	497	51				
	80	153	16	395	40	217	22	738	75	1			
32	100	178	18	433	44	281	29	841	86	7000	4800	4600	350
	120	178	18	459	47	281	29	892	91				
	160	178	18	484	49	281	29	892	91	1			
	50	178	18	523	53	255	26	892	91				
	80	268	27	675	69	369	38	1270	130	1			
40	100	345	35	738	75	484	49	1400	143	5600	4000	3600	300
	120	382	39	802	82	586	60	1530	156		10070000	0.000.00	
	160	382	39	841	86	586	60	1530	156				
	50	229	23	650	66	345	35	1235	126	1			
	80	407	41	918	94	507	52	1651	168	1			
45	100	459	47	982	100	650	66	2041	208	5000	3800	3300	300
	120	523	53	1070	109	806	82	2288	233				
	160	523	53	1147	117	819	84	2483	253				
	80	484	49	1223	125	675	69	2418	247				
50	100	611	62	1274	130	866	88	2678	273	4500	3500	3000	250
30	120	688	70	1404	143	1057	108	2678	273	4500	3300	3000	250
	160	688	70	1534	156	1096	112	3185	325				
	80	714	73	1924	196	1001	102	3185	325				
58	100	905	92	2067	211	1378	141	4134	422	4000	3000	2700	220
30	120	969	99	2236	228	1547	158	4329	441	4000	3000	2700	220
	160	969	99	2392	244	1573	160	4459	455				
	80	969	99	2743	280	1352	138	4836	493				
65	100	1236	126	2990	305	1976	202	6175	630	3500	2800	2400	190
00	120	1236	126	3263	333	2041	208	6175	630	3500	2000	2400	190
	160	1236	126	3419	349	2041	208	6175	630				

⁽Note) 1. Moment of inertia : $I = \frac{1}{4}GD^2$

Ordering Code -SHF - 25 - 100 - 2UH - SP Special specification - 50 _ 100 _ _ _ 2A-GR = Component set (2A-R for sizes 14, 17) 30 50 80 100 17 30 50 100 80 120 LW = Lightweight SP = Special specification 20 30 50 80 100 120 2UH = Hollow shaft 30 50 80 100 120 2111= Input shaft 32 30 50 80 100 120 160 Simplicity unit (Std. structure) 250 = 80 100 120 Blank = Standard product 2SH = Simplicity unit 45 50 80 100 120 160 (Hollow shaft) 50 80 100 120 50 80 100 120

Rating table SHF series

Size	Ratio	Rated to 2000		repeate	it for od peak que	Limi average		Limit for m peak t		Maximus speed		Limit for a input spec	
		Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Oil lubricant	Grease lubricant	Oil lubricant	Grease lubricant
11	50	3.5	0.36	8.3	0.85	5.5	0.56	17	1.73	14000	8500	6500	3500
311	100	5	0.51	11	1.12	8.9	0.91	25	2.55	14000	6500	0300	3300
	30	4.0	0.41	9.0	0.92	6.8	0.69	17	1.7				
14	50	5.4	0.55	18	1.8	6.9	0.70	35	3.6	14000	8500	6500	3500
14	80	7.8	0.80	23	2.4	11	1.1	47	4.8	14000	6500	0300	3500
	100	7.8	0.80	28	2.9	11	1.1	54	5.5				
	30	8.8	0.90	16	1.6	12	1.2	30	3.1				1
	50	16	1.6	34	3.5	26	2.6	70	7.1				
17	80	22	2.2	43	4.4	27	2.7	87	8.9	10000	7300	6500	3500
	100	24	2.4	54	5.5	39	4.0	110	11				
	120	24	2.4	54	5.5	39	4.0	86	8.8				
	30	15	1.5	27	2.8	20	2.0	50	5.1				
	50	25	2.5	56	5.7	34	3.5	98	10				
20	80	34	3.5	74	7.5	47	4.8	127	13	10000	6500	6500	3500
20	100	40	4.1	82	8.4	49	5.0	147	15	10000	6500	0000	3500
	120	40	4.1	87	8.9	49	5.0	147	15				
	160	40	4.1	92	9.4	49	5.0	147	15				
	30	27	2.8	50	5.1	38	3.9	95	9.7			10.	
	50	39	4.0	98	10	55	5.6	186	19				
05	80	63	6.4	137	14	87	8.9	255	26	7500	5500	5000	0500
25	100	67	6.8	157	16	108	11	284	29	7500	5600	5600	3500
	120	67	6.8	167	17	108	11	304	31	1			
	160	67	6.8	176	18	108	11	314	32	1			
	30	54	5.5	100	10	75	7.7	200	20				
	50	76	7.8	216	22	108	11	382	39	1			
	80	118	12	304	31	167	17	568	58	1	1000		0000
32	100	137	14	333	34	216	22	647	66	7000	4800	4600	3500
	120	137	14	353	36	216	22	686	70	1			
	160	137	14	372	38	216	22	686	70	1			
	50	137	14	402	41	196	20	686	70				
	80	206	21	519	53	284	29	980	100	1			
40	100	265	27	568	58	372	38	1080	110	5600	4000	3600	3000
	120	294	30	617	63	451	46	1180	120	1			
	160	294	30	647	66	451	46	1180	120				
	50	176	18	500	51	265	27	950	97				
	80	313	32	706	72	390	40	1270	130				
45	100	353	36	755	77	500	51	1570	160	5000	3800	3300	3000
	120	402	41	823	84	620	63	1760	180		11000/0000		
	160	402	41	882	90	630	64	1910	195				
	50	122	12	715	73	175	18	1430	146				10
	80	372	38	941	96	519	53	1860	190				
50	100	470	48	980	100	666	68	2060	210	4500	3500	3000	2500
	120	529	54	1080	110	813	83	2060	210				
	160	529	54	1180	120	843	86	2450	250				
	50	176	18	1020	104	260	27	1960	200				
	80	549	56	1480	151	770	79	2450	250		2011/10/200		
58	100	696	71	1590	162	1060	108	3180	325	4000	3000	2700	2200
	120	745	76	1720	176	1190	121	3330	340		0.000	(77.7757)	
	160	745	76	1840	188	1210	123	3430	350				

(Note) 1. Oil lubrication is standard for gear units size 50 or larger with a reduction ratio of 50. Use grease lubrication within half the rated torque

2. Moment of inertia : I= 1GD 2

3. See Rating Table Definitions on Page 12 for details of the terms.

4. Size 11 is only available in 2UH.

^{*1:} The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline

^{2.} See Rating Table Definitions on Page 12 for details of the terms

^{*1:} The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline

^{*2:} Size 11 is only available in SHF-2UH

Table 233-1

Positio	nal acci	игасу	See "Enginee	ering data" for a des	cription of terms.				Table 232-
Ratio	Specification	Size	11	14	17	20	25	32	40 or more
	Standard	× 10 ⁻⁴ rad		5.8	4.4	4.4	4.4	4.4	_
30	product	arc min	_	2	1.5	1.5	1.5	1.5	<u></u> n
30	Special	× 10"4rad	1-	_	-	2.9	2.9	2.9	
	product	arc min	_	_	_	1	1	1	_
	Standard	× 10 ⁻⁴ rad	5.8(4.4)	4.4	4.4	2.9	2.9	2.9	2.9
	product	arc min	2(1.5)	1.5	1.5	1	1	1	1
50 or more	Special	× 10 ⁻⁴ rad	_	2.9	2.9	1.5	1.5	1.5	1.5
	product	arc min	_	1	1	0.5	0.5	0.5	0.5

Note 1: * The parenthesized value of size 11 indicates the value for reduction ratio 100.

	eresis loss	See Engineen	ng data" for a description	on or terms.		2	0.0	Table 2
Ratio	Size	11	14	17	20	25	32	40 or more
	× 10 ⁻⁴ rad		8.7	8.7	8.7	8.7	8.7	-
30	arc min		3.0	3.0	3.0	3.0	3.0	_
	× 10 ⁻⁴ rad	5.8	5.8	5.8	5.8	5.8	5.8	5.8
50	arc min	2.0	2.0	2.0	2.0	2.0	2.0	2.0
80 or	× 10 ⁻⁴ rad	5.8	2.9	2.9	2.9	2.9	2.9	2.9
more	arc min	2.0	1.0	1.0	1.0	1.0	1.0	1.0

	Size	11	14	17	20	25	32	40	45	50	58	65
Ratio		100	199.	11.6	20	25	32	40	40	30	50	03
20	× 10 ⁻⁵ rad	-	29.1	16.0	13.6	13.6	11.2	-	_	_	_	_
30	arc sec	 2	60	33	28	28	23	808	3-3	(-	
	× 10 ⁻⁵ rad	Note 1	17.5	9.7	8.2	8.2	6.8	6.8	5.8	5.8	4.8	_
50	arc sec	Note 1	36	20	17	17	14	14	12	12	10	_
00	× 10 ⁻⁵ rad		11.2	6.3	5.3	5.3	4.4	4.4	3.9	3.9	2.9	2.9
80	arc sec	 0	23	13	11	11	9	9	8	8	6	6
	× 10 ⁻⁶ rad	Note 1	8.7	4.8	4.4	4.4	3.4	3.4	2.9	2.9	2.4	2.4
100	arc sec	Note 1	18	10	9	9	7	7	6	6	5	5
400	× 10 ⁻⁵ rad	_	_	3.9	3.9	3.9	2.9	2.9	2.4	2.4	1.9	1.9
120	arc sec		-	8	8	8	6	6	5	5	4	4
400	× 10 ⁻⁵ rad	_	_	-	2.9	2.9	2.4	2.4	1.9	1.9	1.5	1.5
160	arc sec				6	6	5	5	4	4	3	3

Note 1: For size 11, the wave generator is a solid wave generator. See "Engineering data" for details.

	_	Size	11	14	17	20	25	32	40	45	50	58	65
Symbol			1717		THE .		2000	, serve		10000	3000		1000
	T ₁	Nm	8.0	2.0	3.9	7.0	14	29	54	76	108	168	235
	- 19	kgfm	0.082	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24
	T ₂	Nm	2.0	6.9	12	25	48	108	196	275	382	598	843
	12	kgfm	0.2	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K	× 10 ⁴ Nm/rad	3-3 8	0.19	0.34	0.57	1.0	2.4			-	:	19-00
	PN1	kgfm/arc min	<u>—</u> 1	0.056	0.10	0.17	0.30	0.70		_		_	
		× 10 ⁴ Nm/rad		0.24	0.44	0.71	1.3	3.0	_		-	-	1-
	K₂	kgfm/arc min	_	0.07	0.13	0.21	0.40	0.89	<u> </u>	=	-	_	-
		× 10 ⁴ Nm/rad	-	0.34	0.67	1.1	2.1	4.9		:	_	-	-
Reduction	K,	kgfm/arc min —	0.10	0.20	0.32	0.62	1.5	-	_	_	_	-	
ratio 30	_	× 10 ⁻⁴ rad	<u>(2—1)</u> 0	10.5	11.5	12.3	14	12.1		12 2	_		-
30	θ 1	arc min	 8	3.6	4.0	4.1	4.7	4.3	-	S-3	7 a	N==	10-01
		× 10⁻⁴rad	2-0	31	30	38	40	38	2002		_	_	
	θ 2	arc min		10.7	10.2	12.7	13.4	13.3		1-0	-		
		× 10 ⁴ Nm/rad	0.22	0.34	0.81	1.3	2.5	5.4	10	15	20	31	
	K,	kgfm/arc min	0.066	0.1	0.24	0.38	0.74	1.6	3.0	4.3	5.9	9.3	-
		× 10 ⁴ Nm/rad	0.3	0.47	1.1	1.8	3.4	7.8	14	20	28	44	
	K ₂	kgfm/arc min	0.09	0.14	0.32	0.52	1.0	2.3	4.2	6.0	8.2	13	_
Reduction		× 10 ⁴ Nm/rad	0.32	0.57	1.3	2.3	4.4	9.8	18	26	34	54	_
ratio 50	K,	kgfm/arc min	0.096	0.17	0.4	0.67	1.3	2.9	5.3	7.6	10	16	_
	10000	× 10 ⁻⁴ rad	3.6	5.8	4.9	5.2	5.5	5.5	5.2	5.2	5.5	5.2	_
	θ ,	arc min	1.2	2.0	1.7	1.8	1.9	1.9	1.8	1.8	1.9	1.8	_
	7000	× 10 ⁻⁴ rad	8.0	16	12	15.4	15.7	15.7	15.4	15.1	15.4	15.1	_
	0 2	arc min	2.6	5.6	4.2	5.3	5.4	5.4	5.3	5.2	5.3	5.2	

^{*} The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

Symbol		Size	11	14	17	20	25	32	40	45	50	58	65
	7_	Nm	8.0	2.0	3.9	7.0	14	29	54	76	108	168	235
	T,	kgfm	0.82	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24
	12.000	Nm	2	6.9	12	25	48	108	196	275	382	598	843
	T2	kgfm	0.2	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K,	× 10 ⁴ Nm/rad	0.27	0.47	1	1.6	3.1	6.7	13	18	25	40	54
	K ₁	kgfm/arc min	0.08	0.14	0.3	0.47	0.92	2.0	3.8	5.4	7.4	12	16
	K ₂	× 10 ⁴ Nm/rad	0.34	0.61	1.4	2.5	5.0	11	20	29	40	61	88
Reduction	K ₂	kgfm/arc min	0.1	0.18	0.4	0.75	1.5	3.2	6.0	8.5	12	18	26
ratio	К	× 10 ⁴ Nm/rad	0.44	0.71	1.6	2.9	5.7	12	23	33	44	71	98
80	K	kgfm/arc min	0.13	0.21	0.46	0.85	1.7	3.7	6.8	9.7	13	21	29
or more		× 10 ⁻⁴ rad	3	4.1	3.9	4.4	4.4	4.4	4.1	4.1	4.4	4.1	4.4
	θ,	arc min	1	1.4	1.3	1.5	1.5	1.5	1.4	1.4	1.5	1.4	1.5
		× 10 ⁻⁴ rad	6	12	9.7	11.3	11.1	11.6	11.1	11.1	11.1	11.1	11.3
	θ 2	arc min	2.2	4.2	3.3	3.9	3.8	4.0	3.8	3.8	3.8	3.8	3.9

^{*} The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

Ratcheting torque See "Engineering data" for a description of terms.

Size

Total reduction ratio

			.99						Table 233- Unit:Nr
14	17	20	25	32	40	45	50	58	65
110	190	280	580	1200	2300	3500	7 903		_
140	260	450	880	1800	3600	5000	7000	10000	14000
100	200	330	650	1300	2700	4000	5300	8300	12000
	110 140	110 190 140 260	110 190 280 140 260 450	110 190 280 580 140 260 450 880	110 190 280 580 1200 140 260 450 880 1800	110 190 280 580 1200 2300 140 260 450 880 1800 3600	110 190 280 580 1200 2300 3500 140 260 450 880 1800 3600 5000	110 190 280 580 1200 2300 3500 — 140 260 450 880 1800 3600 5000 7000	110 190 280 580 1200 2300 3500 — — 140 260 450 880 1800 3600 5000 7000 10000

Table 233-3

SHF series Unit:Nm

SHG series										Table 23 Unit: N
Size	14	17	20	25	32	40	45	50	58	65
Total reduction ratio	210	420	700	1300	2800	5200	7600	10400	16200	22800

-39-

Checking output bearing

A precision cross roller bearing is built in the unit type to directly support the external load (output flange). Please calculate maximum moment load, life of cross roller bearing, and static safety factor to fully maximize the performance of housed unit (gearhead).

See Pages 030 to 034 of "Engineering data" for each calculation formula.

■ Checking procedure

(1) Checking the maximum moment load (Mmax) Calculate the maximum moment load (Mmax). Maximum moment load (Mmax) ≦ allowable moment (Mc)

(2) Checking the life

	Calculate the radial load (Fav) and the average axial load (Faav).	-	Calculate the radial load coefficient (x) and the axial load coefficient (y).	Calculate the lifetime
9	0) 01			

(3) Checking the static safety coefficient

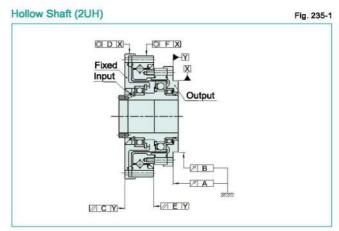
Calculate the static equivalent radial load coefficient (Po). Check the static safety coefficient. (fs)

Output bearing specifications

The specifications of the cross roller are shown in Table 234-1.

Specifications

	Pitch circle	Offset		Basic rat	ted load		Allow	able	Moment st	iffness Km
Size	dp	R	Basic dynam	ic rated load	Basic static	A CONTRACTOR OF THE PARTY OF TH	moment	load Mc	×10 * Nm/rad	kgfm/arc mir
	m		×10 ² N	kgf	×10 ² N	kgf	Nm	kgfm		
11	0.043	0.018	52.9	540	75.5	770	74	7.6	6.5	1.8
14	0.050	0.0217	58	590	86	880	※ 74	7.6	8.5	2.5
17	0.060	0.0239	104	1060	163	1670	※ 124	12.6	15.4	4.6
20	0.070	0.0255	146	1490	220	2250	※ 187	19.1	25.2	7.5
25	0.085	0.0296	218	2230	358	3660	258	26.3	39.2	11.6
32	0.111	0.0364	382	3900	654	6680	580	59.1	100	29.6
40	0.133	0.044	433	4410	816	8330	849	86.6	179	53.2
45	0.154	0.0475	776	7920	1350	13800	1127	115	257	76.3
50	0.170	0.0525	816	8330	1490	15300	1487	152	351	104
58	0.195	0.0622	874	8920	1710	17500	2180	222	531	158
65	0.218	0.072	1300	13300	2230	22700	2740	280	741	220


^{*} The basic dynamic rated load means a certain static radial load so that the basic dynamic rated life of the roller bearing is a million rotations. The basic static rated load means a static load that gives a certain level of contact stress (4 kN/mm²) in the center of the contact area between the rolling element receiving the maximum load and the orbit.

Recommended tolerances for assembly

Recommended tolerances for assembly shown below.

Flexspline fixed

Input: Wave generator Output: Circular spline Fixed: Flexspline

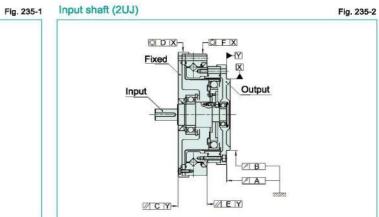
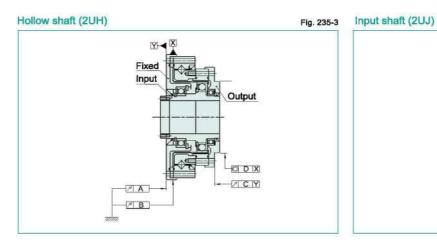



Table 235-1

Size	11	14	17	20	25	32	40	45	50	58	65	
Α	0.033	0.033	0.038	0.040	0.046	0.054	0.057	0.057	0.063	0.063	0.067	
В	0.035	0.035	0.035	0.039	0.041	0.047	0.050	0.053	0.060	0.063	0.063	
С	0.053	0.064	0.071	0.079	0.085	0.104	0.111	0.118	0.121	0.121	0.131	
D	0.053	0.053	0.050	0.059	0.061	0.072	0.075	0.078	0.085	0.088	0.089	
E	0.039	0.040	0.045	0.051	0.057	0.065	0.071	0.072	0.076	0.076	0.082	
F	0.038	0.038	0.038	0.047	0.049	0.054	0.060	0.065	0.067	0.070	0.072	

Circular spline fixed

Input: Wave generator Output: Flexspline Fixed: Circular spline

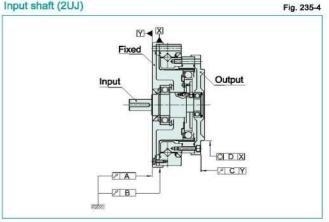


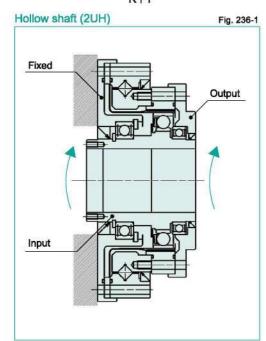
Table 171-2

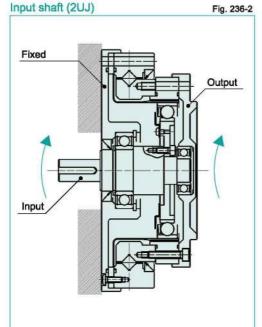
											Unit: mn
Size Symbol	11	14	17	20	25	32	40	45	50	58	65
Α	0.027	0.037	0.039	0.046	0.047	0.059	0.060	0.070	0.070	0.070	0.076
В	0.031	0.031	0.031	0.038	0.038	0.045	0.048	0.050	0.050	0.050	0.054
С	0.053	0.064	0.071	0.079	0.085	0.104	0.111	0.118	0.121	0.121	0.131
D	0.053	0.053	0.053	0.059	0.061	0.072	0.075	0.078	0.085	0.088	0.089

-41-

^{*} The value of the moment stiffness is the average value.

Rotational direction and reduction ratio of a unit type

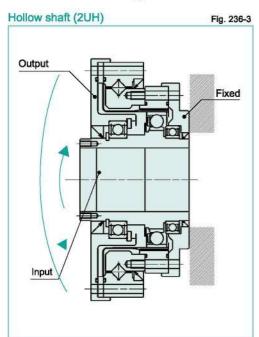

The rotational direction and the reduction ratio vary depending on the flange to be fixed for the unit type.


Flexspline fixed

Input: Wave generator Output: Circular spline Fixed: Flexspline

Output rotational direction: Same rotational direction as the input

Reduction ratio (i): $i = \frac{1}{R+1}$



Circular spline fixed

Input: Wave generator Output: Flexspline Fixed: Circular spline

Output rotational direction: Opposite rotational direction to the input

Reduction ratio (i): $i = \frac{-1}{R}$

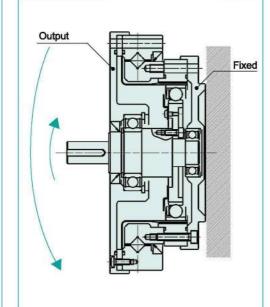
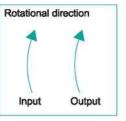



Fig. 236-4

Input shaft (2UJ)

Design Guide _____

Lubrication

The standard lubricant for Harmonic Drive® gear units is Harmonic Grease SK-1A and SK-2 (Harmonic Grease 4B No.2 for the cross roller bearing). Harmonic Grease 4B No.2 is also available for long-life. The specifications of the grease are described on Page 016.

- Sealing mechanism
- Rotating and sliding area Oil seal (with a spring). Take care regarding flaws on the shaft.
- Flange mating face and mating O-ring and seal adhesive. distortion on the plane and how the O-ring is engaged.
- Screw hole area ------ Use a screw lock agent (LOCKTITE 242 is recommended) or seal tape.

(Note) If you use Harmonic Grease 4BNo.2, strict sealing is required.

Rust prevention

Although Harmonic Drive® gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.

Installation accuracy

For peak performance of the gear, it is essential that the following tolerances be observed when assembly is complete. Pay careful attention to the following points and maintain the recommended assembly tolerances. In addition, perform the appropriate installation according to each series,

because the torque capacity of SHG series is larger than SHF series.

- Warp and deformation on the mounting surface
- · Blocking of foreign matter
- Problems caused by burrs, raised surfaces and location around the tap area of the mounting holes
- · Insufficient chamfering on the housing mount
- Insufficient radii on the housing mount

Installation and transmission torque

Side (A)
Side (B)
Side (B)

SHG series: (A) Side-installation and Torque Transmission Capacity

T۶	ab	le	2	Ľ

Item	Size	14	17	20	25	32	40	45	50	58	65
Number of b	olts	8	12	12	12	12	12	18	12	16	16
Bolt size		М3	МЗ	МЗ	M4	M5	M6	M6	M8	M8	M10
Pitch circle	mm	64	74	84	102	132	158	180	200	226	258
Clamp torque	Nm	2.4	2.4	2.4	5.4	10.8	18.4	18.4	44	44	74
Transmission torque	Nm	128	222	252	516	1069	1813	3098	4163	6272	9546

SHF series: (A) Side-installation and Torque Transmission Capacity

SHF series:	(A) Side	e-installation	n and Torqu	e Transmiss	ion Capacit	y					Table 238-2
Item	Size	11	14	17	20	25	32	40	45	50	58
Number of bo	olts	4	8	12	12	12	12	12	18	12	16
Bolt size		МЗ	МЗ	МЗ	МЗ	M4	M5	М6	M6	М8	М8
Pitch circle	mm	56.4	64	74	84	102	132	158	180	200	226
Clamp torque	Nm	2.0	2.0	2.0	2.0	4.5	9.0	15.3	15.3	37	37
Transmission torque	Nm	47	108	186	206	431	892	1509	2578	3489	5236

(Table 238-1, 238-2/Notes)

- 1. The material of the thread must withstand the clamp torque.
- 2. Recommended bolt: JIS B 1176 socket head cap screw / Strength Range: JIS B 1051 12.9 or more
- 3. Torque coefficient: K=0.2
- 4. Clamp coefficient: A=1.4
- Friction coefficient on the surface contacted: μ=0.15
- 6. Use washers for SHG/SHF-LW.

SHG series: (B) Side-installation and Torque Transmission Capacity

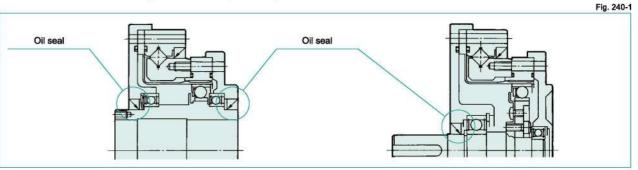
Ta	hla	23	0_1

Item	Size	14	17	20	25	32	40	45	50	58	65
Number of b	olts	8	16	16	16	16	16	12	16	12	16
Bolt size		мз	МЗ	МЗ	M4	M5	M6	M8	M8	M10	M10
Pitch circle	mm	44	54	62	77	100	122	140	154	178	195
Clamp torque	Nm	2.4	2.4	2.4	5.4	10.8	18.36	44	44	89	89
Transmission torque	Nm	88	216	248	520	1080	1867	2914	4274	5927	8658

SHF series: (B) Side-installation and Torque Transmission Capacity

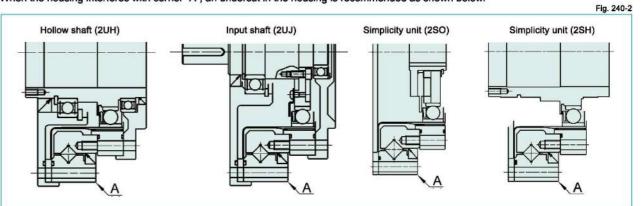
Table 239-2

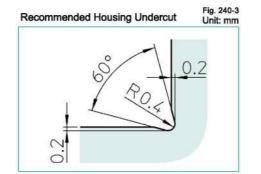
Item	Size	-11	14	17	20	25	32	40	45	50	58
Number of bo	olts	6	8	16	16	16	16	16	12	16	12
Bolt size		мз	М3	М3	М3	M4	M5	M6	M8	M8	M10
Pitch circle	mm	37	44	54	62	77	100	122	140	154	178
Clamp torque	Nm	2	2.0	2.0	2.0	4.5	9.0	15.3	37	37	74
Transmission torque	Nm	46	72	176	206	431	902	1558	2440	3587	4910


(Table 239-1, 239-2/Notes)

- The material of the thread must withstand the clamp torque.
 Recommended bolt: JIS B 1176 hexagonal bolt / Strength: JIS B 1051 12.9 or more
- 3. Torque coefficient: K=0.2
- 4. Clamp coefficient A=1.4
- 5. Friction coefficient on the surface contacted: µ=0.15

Installation Recommendations

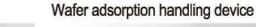

Installation on the periphery of the oil seal


Install an oil seal on the mounting face so that they have a space of at least 1 mm between them to avoid interference with each other.

■ Manufacturing for Mating Part and Housing

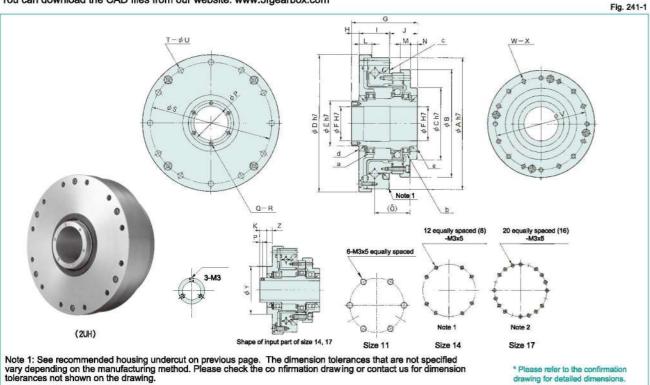
When the housing interferes with corner "A", an undercut in the housing is recommended as shown below.

Main markets



Vertical multi-joint robot

Multi-joint robot



Outline Dimensions (2UH) -

Outline dimensions (2UH)

You can download the CAD files from our website: www.3fgearbox.com

Dimen	A POPUL	/OLI	111	
脚 自ま 二 自	Cinio les	41 <i>07 A</i> 8	120	

Di	mensions (2UH)									Table 241	-1 Unit: mm
Sym	Size	11	14	17	20	25	32	40	45	50	58	65
	φ A h7	62	70	80	90	110	142	170	190	214	240	276
	SHG/SHF Series	45.3	54	64	75	90	115	140	160	175	201	221
φВ	SHG/SHF-LW Series		52	62	73	88	115	140	160	168	195	213
	φC h7	30.5	36	45	50	60	85	100	120	130	150	160
	φD h7	64	74	84	95	115	147	175	195	220	246	284
	φE h7	18	20	25	30	38	45	59	64	74	84	96
	φF H7	14	14	19	21	29	36	46	52	60	70	80
	G	48	52.5	56.5	51.5	55.5	65.5	79	85	93	106	128
	Н	14	12	12	5	6	7	8	8	9	10	14
	ı	19	20.5	23	25	26	32	38	42	45	52	56.5
	J	15	20	21.5	21.5	23.5	26.5	33	35	39	44	57.5
	К	6.5	6.5	6.5			-	_	-		_	
	L	8	9	10	10.5	10.5	12	14	15	16	17	18
2727	SHG/SHF Series	6.5	8	8.5	9	8.5	9.5	13	12	12	15	19.5
М	SHG/SHF-LW Series	_	11.5	12	13.5	15.5	20.5	25	27	30	35	42.5
	N	6.5	7.5	8.5	7	6	5	7	7	7	7	12
	0	17.5	21.7	23.9	25.5	29.6	36.4	44	47.5	52.5	62.2	72
	φP (P)	_	(2.5)	(2.5)	25.5	33.5	40.5	52	58	67	77	88
	T Q	_	3	3	6	6	6	6	6	6	8	6
	R	_	M3	M3	M3×6	M3×6	M3×6	M4×8	M4×8	M4×8	M4×8	M5×10
	øS .	56.4	64	74	84	102	132	158	180	200	226	258
	T	4	8	12	12	12	12	12	18	12	16	16
	φu	3.5	3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
	۵V	37	44	54	62	77	100	122	140	154	178	195
	w w	6	12 E. A. 8	20 E. A. 16	16	16	16	16	12	16	12	16
	200000000000000000000000000000000000000	M3X5	M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
	SHG/SHF Series	φ3.4X4	φ3.5×11.5	φ3.5×12	φ3.5×13.5	φ4.5×15.5	φ5.5×20.5	φ6.6×25	φ9×28	φ9×30	φ11×35	φ11×42.5
X	7.0000000000000000000000000000000000000	Ψ0.47.4 —	M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
	SHG/SHF-LW Series	_	φ3.5×11.5	φ3.5×12	φ3.5×13.5	φ5×15.5	φ6×20.5	φ7×25	φ9×27	φ9×30	φ11×35	φ11×42.5
	φY	36	36	45	Ψ0.0-10.0	Ψ0-10.0	Ψ0-20.0	Ψ120	Ψ5Σ1	Ψ350	Ψ11-00	Ψ1112.0
	Z Z	7.5	5.5	5.5					_			
	a	6804 ZZ	6804 ZZ	6805 ZZ	6806 ZZ	6808 ZZ	6909 ZZ	6912 ZZ	6913 ZZ	6915 ZZ	6917 ZZ	6920 ZZ
	SHG/SHF Series	6704 ZZ	6804 ZZ	6805 ZZ	6806 ZZ	6808 ZZ	6809 ZZ	6812 ZZ	6813 ZZ	6815 ZZ	6817 ZZ	6820 ZZ
b	SHG/SHF-LW Series	-	6804 ZZ	6805 ZZ	6806 ZZ	6808 ZZ	6809 ZZ	6812 ZZ	6813 ZZ	6815 ZZ	6817 ZZ	6820 ZZ
	C C	D41.950.95		D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D21623811
	SHG/SHF Series	S18274	S20304.5	S25356	S30405	S38475	S45607	S60789	S658510	S759510	S8511012	S10012513
d	SHG/SHF-LW Series	5102/4	S20304.5 S20304.5	S25356 S25356	S30405 S30405	S38475	S45607	S60789		S759510 S759510	S8511012	
	SHG/SHF Series	S18274							S658510			S10012513
е	SHG/SHF-LW Series		S20304.5	S25356	S30405	S38475	S45555	S59685	S59685	S69785	S84945	S961128
	SHG/SHI-LIVY Series	 3	S20304.5	S25356	S30405	S38475	S45555	S59685	S59685	S69785	S84945	S961128

Mass (2UH) Table 242-1 Unit: kg

Size Symbol	11	14	17	20	25	32	40	45	50	58	65
2UH	0.53	0.71	1.00	1.38	2.1	4.5	7.7	10.0	14.5	20.0	28.5
2UH-LW (Lightweight)	1	0.55	0.8	1.1	1.6	3.6	6.2	8	11.8	16.4	23.3

Moment of Inertia (2UH)

Symbol		Size	11	14	17	20	25	32	40	45	50	58	65
Moment of	1	× 10 ⁻⁴ kgm ²	0.080	0.091	0.193	0.404	1.070	2.85	9.28	13.8	25.2	49.5	94.1
inertia	J	× 10 ⁻⁶ kgfms²	0.082	0.093	0.197	0.412	1.090	2.91	9.47	14.1	25.7	50.5	96.0

Starting torque	e (2UH)			See "Engineering data" for a description of terms. Please use as reference values; the values vary based on use conditions.								
Size Ratio	11	14	17	20	25	32	40	45	50	58	65	
30	T	11	30	43	64	112	· -	, -	_			
50	7.1	8.8	27	36	56	85	136	165	216	297	-	
80	——————————————————————————————————————	7.5	25	33	50	74	117	138	179	244	314	
100	5.9	6.9	24	32	49	72	112	131	171	231	297	
120	1		24	31	48	68	110	126	165	223	287	
160	_	_		31	47	67	105	122	156	213	276	

Backdriving to	rque (21	JH)			See "E values;	Table 242-4 Unit: Nm					
Size Ratio	11	14	17	20	25	32	40	45	50	58	65
30	-	5.4	17	23	35	57		-	-	-	
50	4.6	5.3	16	22	34	51	82	99	129	178	
80	-	7.2	24	31	48	70	112	133	172	234	301
100	7.6	8.2	29	38	59	86	134	158	205	278	356
120	-		34	45	69	97	158	182	237	322	413
160	30 -3	_	n=	59	90	128	201	233	299	408	530

Continuous Operating Time (2UH)

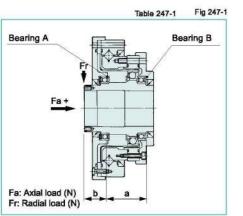
The internal temperature rises due to the effect of the oil seal and the supporting bearing used for the input shaft (high-speed rotation side) for SHF-2UH. Observe the operating time shown in Table 246-2 for continuous operation.

The operating time shown in Table 246-2 is calculated based on the time

required for the temperature inside the unit to rise to 80°C and for the oil seal temperature to rise to 100°C. Take care not to exceed the temperature given above in conducting continuous operation. The following review will be necessary if the temperature exceeds the value given above. Contact us in such an event.

- Change of timing to replace lubricant
 Change of lubricant
- Measures against lubricant leakage accompanied by the pressure rise inside the unit
- Measures against deterioration due to heat on the oil seal area

Continuous operating ti	me	Table246-2
Operating time Size	Continuous operating time at no-load operation (min)	Continuous operating time at the rated load (min)
11	90	60
14	90	60
17	90	60
20	90	60
25	60	45
32	45	35
40	40	30
45	35	25
50	30	20
58	20	15
65	15	10

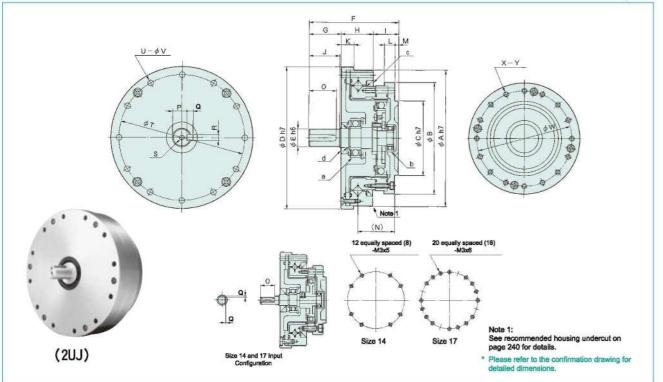

^{*} Contact us as the continuous operating time may vary significantly depending

Performance Data for the Input Bearing for Hollow Shaft (2UH)

The internal temperature rises due to the effect of the oil seal and the supporting bearing used for the input shaft (high-speed rotation side) for SHF-2UH. Observe the operating time shown in Table 246-2 for continuous operation. The operating time shown in Table 246-2 is calculated based on the time required for the temperature inside the unit to rise to 80°C and for the oil seal temperature to rise to 100°C. Take care not to exceed the temperature given above in conducting continuous operation. The following review will be necessary ifthe temperature exceeds the value given above. Contact us insuch an event.

	input	bearing	specii	cauon
--	-------	---------	--------	-------

		Bearing A			Bearing B				Maximum
Size	Model	Basic dynamic rated load	Basic static rated load	Model	Basic dynamic rated load	Basic static rated load	a		radial load
		Cr(N)	Cor(N)		Cr(N)	Cor(N)	(mm)	(mm)	Fr(N)
11	6804ZZ	4000	2470	6704ZZ	1400	720	25.7	15.5	
14	6804ZZ	4000	2470	6804ZZ	4000	2470	27	16.5	230
17	6805ZZ	4300	2950	6805ZZ	4300	2950	29	17.5	250
20	6806ZZ	4500	3450	6806ZZ	4500	3450	27	15.5	275
25	6808ZZ	4900	4350	6808ZZ	4900	4350	29.5	16.5	250
32	6909ZZ	14100	10900	6809ZZ	5350	5250	33	23	770
40	6912ZZ	19400	16300	6812ZZ	11500	10900	39.5	27.5	1060
45	6913ZZ	17400	16100	6813ZZ	11900	12100	44	28.5	900
50	6915ZZ	24400	22600	6815ZZ	12500	13900	49	31.5	1370
58	6917ZZ	32000	29600	6817ZZ	18700	20000	56.2	36.5	1720
65	6920ZZ	42500	36500	6820ZZ	19600	21200	67	44.5	2300


-47-

Outline Dimensions (2UJ) -

Outline Dimensions (2UJ)

You can download the CAD files from our website: www.3fgearbox.com

Dimensions (2UJ)

Table 248-1 Unit: mm

									1000 2 10	- I OIIII. IIII
Size Symbol	14	17	20	25	32	40	45	50	58	65
φA h7	70	80	90	110	142	170	190	214	240	276
φВ	54	64	75	90	115	140	160	175	201	221
φC h7	36	45	50	60	85	100	120	130	150	160
φD h7	74	84	95	115	147	175	195	220	246	284
φE h6	6	8	10	14	14	16	19	22	22	25
F	50.5	56	63.5	72.5	84.5	100	108	121	133	156
G	15	17	21	26	26	31	31	37	37	42
Н	20.5	23	25	26	32	38	42	45	52	56.5
j i	15	16	17.5	20.5	26.5	31	35	39	44	57.5
J	14	16	20	25	25	30	30	35	35	40
К	9	10	10.5	10.5	12	14	15	16	17	18
L	8	8.5	9	8.5	9.5	13	12	12	15	19.5
М	2.5	3	3	3	5	5	7	7	7	12
N	21.7	23.9	25.5	29.6	36.4	44	47.5	52.5	62.2	72
0	11	12	16.5	22.5	22.5	27.5	28	33	33	39
Р	_	_	8.2 &1	11 &1	11 &1	13 &	15.5 &1	18.5 &1	18.5 &1	21 &1
Q	0.5	0.5	3 &025	5 8000	5 & 630	5 & 630	6 & 6.030	6 8,000	6 8.000	7 & 3636
R	_	_	3 8025	5 8000	5 & 6.030	5 8.000	6 8.030	6 8.000	6 8.000	8 8006
S		_	M3×6	M5×10	M5×10	M5×10	M6×12	M6×12	M6×12	M8×16
φΤ	64	74	84	102	132	158	180	200	226	258
U	8	12	12	12	12	12	18	12	16	16
φV	3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
φW	44	54	62	77	100	122	140	154	178	195
x	12 E. A. 8	20 E. A. 16	16	16	16	16	12	16	12	16
Y	M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
Τ.	φ3.5×11.5	φ3.5×12	φ3.5×13.5	φ4.5×15.5	φ5.5×20.5	φ6.6×25	φ9×28	φ9×30	φ11×35	φ11×42.
а	698 ZZ	6900 ZZ	6902 ZZ	6002 ZZ	6004 ZZ	6006 ZZ	6206 ZZ	6207 ZZ	6208 ZZ	6209 ZZ
b	695 ZZ	697 ZZ	698 ZZ	6900 ZZ	6902 ZZ	6003 ZZ	6004 ZZ	6005 ZZ	6006 ZZ	6007 ZZ
С	D49585	D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D2162381
d	G8184	D10205	D15255	D15255	D20355	D30457	D30457	D35557	D40607	D45607

Mass (2UJ)											Table 249-1 Unit: kg
	Size	14	17	20	25	32	40	45	50	58	65

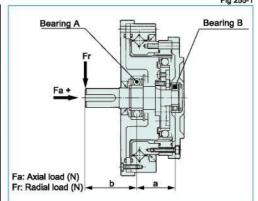
Size Symbol	14	17	20	25	32	40	45	50	58	65
Mass (kg)	0.66	0.94	1.38	2.1	4.4	7.3	9.8	13.9	19.4	26.5

Moment of Inertia (2UJ)

					792							Table 249-2
Symbol		Size	14	17	20	25	32	40	45	50	58	65
Moment of	1	×10 ⁻⁴ kgm²	0.025	0.059	0.137	0.320	1.20	3.41	5.80	9.95	20.5	35.5
inertia	J	×10 ^{-t} kgfms ²	0.026	0.060	0.140	0.327	1.22	3.48	5.92	10.2	20.9	36.2

Starting torque	(2UJ)			See "Engineering data" for a description of terms. Please use the values vary based on use conditions. as reference values;								
Size Ratio	14	17	20	25	32	40	45	50	58	65		
30	6.8	11	19	26	63	_	=	-	_	=		
50	5.7	9.7	14	22	41	72	94	125	178	_		
80	4.4	7.2	11	15	29	52	68	88	125	163		
100	3.7	6.5	9.9	14	27	47	60	80	113	147		
120	1-	6.2	9.3	13	24	44	55	74	105	137		
160	_		8.6	12	23	39	50	66	94	122		

Backdriving torc	que (2UJ)			See "Engineering values; the values			ns. Please use a s.	s reference	Table 249-4 Unit: Nm
Size	14	17	20	25	32	40	45	50	58	65
30	3.5	5.9	10	16	31		-	_	11	11-
50	3.4	5.8	8.4	13	25	43	56	75	107	1 1
80	4.2	6.9	10	15	28	50	65	85	120	154
100	4.5	7.8	12	17	33	56	72	96	135	176
120	_	8.9	13	19	34	63	79	106	151	198
160	-	-	17	23	43	75	96	126	181	235

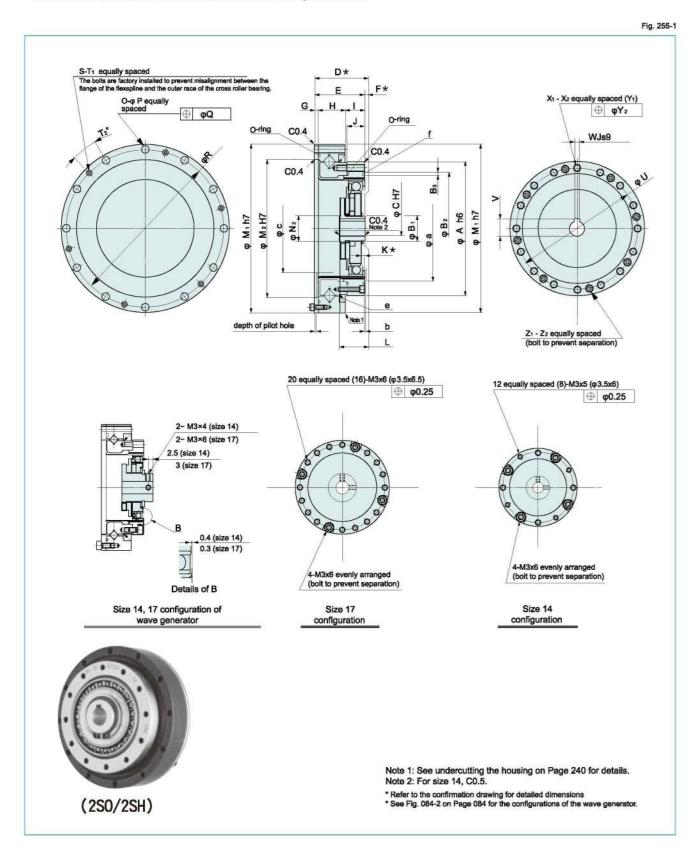

Performance Data for the Input bearing (2UJ)

The input shaft of the 2UJ is supported by two single-row deep-groove bearings. For peak performance of the SHF-2UJ it is essential that the following Specification for Input Bearing be observed -Figure 254-1 shows the points of application of forces. See Table 254-1 for the dimensions (a) and (b). Graphs 254-1 and 254-2 show the Maximum Allowable Radial and Axial Loads. The values in Graph 254-1 and 254-2 are based on an average input speed of 2,000 rpm and a mean bearing life of L10=7,000h.

Example: If the input shaft of a SHF-40-2UJ unit is subjected to an axial load (Fa) of 500 N. The maximum allowable radial force will be 400 N.

Input bearing specifications

		Bearing A			Bearing B				Maximum
Size	Model	Basic dynamic rated load	Basic static rated load	Model	Basic dynamic rated load	Basic static rated load	8		radial load
		Cr(N)	Cor(N)		Cr(N)	Cor(N)	(mm)	(mm)	Fr(N)
14	698ZZ	2240	910	695ZZ	1080	430	20	14	110
17	6900ZZ	2700	1270	697ZZ	1610	710	23.5	21	135
20	6902ZZ	4350	2260	698ZZ	2240	910	26.5	23.3	210
25	6002ZZ	5600	2830	6900ZZ	2700	1270	28	28	270
32	6004ZZ	9400	5000	6902ZZ	4350	2260	36	27	490
40	6006ZZ	13200	8300	6003ZZ	6000	3250	43	32.5	660
45	6206ZZ	19500	11300	6004ZZ	9400	5000	47.5	34.5	1030
50	6207ZZ	25700	15300	6005ZZ	10100	5850	53	39	1330
58	6208ZZ	29100	17800	6006ZZ	13200	8300	62.5	40	1600
65	6209ZZ	32500	20500	6007ZZ	16000	10300	79	63	1650



-49-

Outline Dimensions(2SO, 2SH) -

Outline Dimensions (2SO)

You can download the CAD files from our website: www.3fgearbox.com

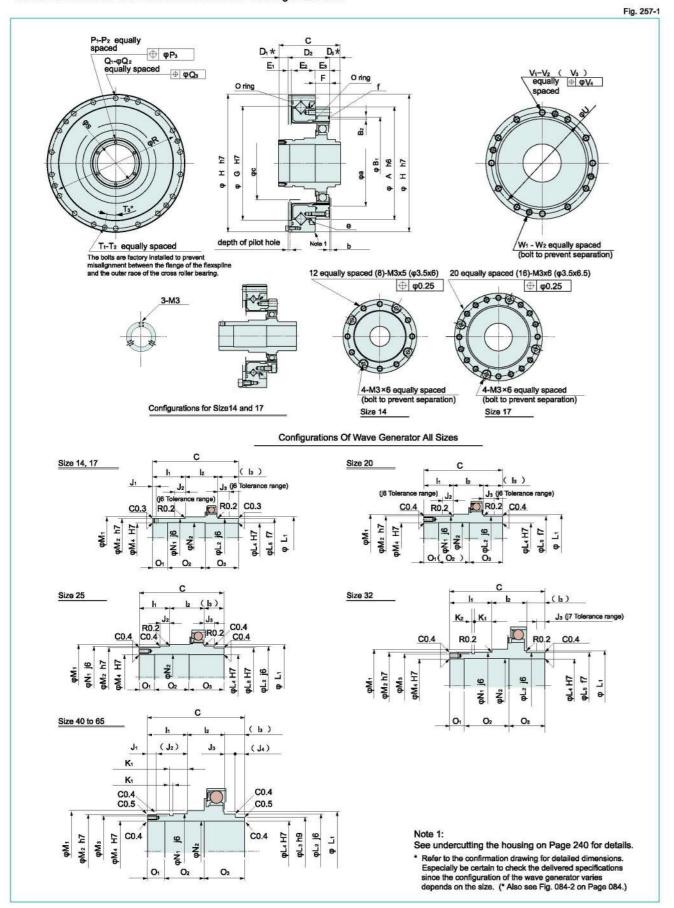
Dimensions (2SO)

		SIZE	14	17	20	25	32	40	45	50	58	65
Symbol	φA h6		50	60	70	85	110	135	155	170	195	215
	φΒ:		14	18	21	26	26	32	32	32	40	48
	φB ₂		14	-	21	20	_	- JZ	128	141	163	180.4
	φB ₂		2 TO						2.7	2.7	2.7	2.7
	ΨΟ3	Standard (H7)	6	8	9	11	14	14	19	19	22	24
	φC	Max. dimen.	8	10	13	15	15	20	20	20	25	30
		SHF Series	28.5 🖧	32.5 %	33.5 %	37 -1.1	44 - 1.1	53 - 1.1	58 -12	64 - 13	75.5 %	- 30
	D*	SHG Series	28.5 %	32.5 %	33.5 &4	37 %	44 86	53 %	58 -8.s	64 &7	75.5 &7	83 %7
	E	OTTO OCTIOS	23.5	26.5	29	34	42	51	56.5	63	73	81.5
	F*		5	6	4.5	3	2	2	1.5	1	2.5	1.5
	G		2.4	3	3	3.3	3.6	4	4.5	5	5.8	6.5
	н		14.1	16	17.5	18.7	23.4	29	32	34	40.2	43
	I I	1	7	7.5	8.5	12	15	18	20	24	27	32
	J		6	100075035	7.5	10	14	17	19	22	25	29
	J	OUT Onder		6.5	-	2.1						
	K*	SHF Series	0.4	0.3	0.1 1.5	3.5	2.5 4.2	3.3 5.6	3.7 6.3	4.2 7	4.8 8.2	- 0.5
		SHG Series	1.4	1.6	20.1 %		22 01	27.5 %1	27.9 %1			9.5
	L	SHF Series	17.6 - 1	19.5 & 1		20.2 &1				32 -8.1	34.9 %1	44.00
		SHG Series	18.5 &1	20.7 &1	21.5 &1	21.6 &1	23.6 &1	29.7 & 1	30.5 &1	34.8 -8.1	38.3 & 1	44.6 &1
	φM₁h7	- 19	70	80	90	110	142	170	190	214	240	276
	φM₂ H7		48	60	70	88	114	140	158	175	203	232
	φN₂	-	_	_	-	-	_	32	_	32		48
	0_		8	12	12	12	12	12	18	12	16	16
	φP		3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
	φQ		0.25	0.25	0.25	0.25	0.25	0.3	0.3	0.5	0.5	0.5
	φR	-	64	74	84	102	132	158	180	200	226	258
	S		2	4	4	4	4	6	6	6	8	8
	T ₁		M3×6	M3×6	M3× 8	M3× 8	M4× 8	M4× 10	M4× 8	M5× 12	M5× 12	M6× 16
	T ₂ (angle	9)	22.5°	15°	15°	15°	15°	15°	10°	15°	11.25°	11.25°
	φU		44	54	62	77	100	122	140	154	178	195
	٧		_	_	10.4	12.8	16.3	16.3	21.8	21.8	24.8	27.3
	W Js9		: -	, , , ,	3	4	5	5	6	6	6	8
	X ₁		12 E. A. 8	12E. A. 16	16	16	16	16	12	16	12	16
	X ₂		M3×5	M3×6	M3× 6	M4× 7	M5× 8	M6× 10	M8× 10	M8× 11	M10× 15	M10× 1
	Yı		φ3.5×6	φ3.5×6.5	•	φ 4.5× 10	φ 5.5× 14	φ 6.6× 17	φ 9× 19	φ 9× 22	φ 11× 25	φ 11× 2
	Y ₂		0.25	0.25	0.25	0.25	0.25	0.3	0.5	0.5	0.5	0.5
	Z ₁		4	4	4	4	4	4	4	8	6	8
	Z ₂		M3×6	M3×6	M3× 8	M3× 10	M4× 16	M5× 20	M5× 20	M5× 25	M6× 25	M6× 30
Minimum	φа		38	45	53	66	86	106	119	133	154	172
housing	b		1	1	1.5	1.5	1.5	2	2	2	2.5	2.5
clearance	φс		31	38	45	56	73	90	101	113	131	150
	d		1.7	2.1	2	2	2	2	2.3	2.5	2.9	3.5
	е		D49585	D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D2162381
	f		1-		_	-	-	_	d1 121.5 d2 2.0	S135	d1 157.0 d2 2.0	S175

 The following dimensions can be modified to accommodate customer-specific requirements.

Wave Generator : C
Flexspline : O and P
Circular Spline : X1 and X2

- *The D, F and K values indicate relative position of individual gearing components (wave generator, flexpline, circular spline). Please strictly adhere to these values when designing your housing and mating parts.
- Please note that the circular spline face of sizes 14 through 40 does not incorporate an O-ring groove. Please provide alternate sealing arrangements.
- Due to the deformation of the Flexspline during operation, it is necessary to provide a minimum housing clearance, dimensions φa, b, c.


Wave generator is removed when the product is delivered.

Mass (2SO)										Table 256- Unit: k
Size Symbol	14	17	20	25	32	40	45	50	58	65
Mass (kg)	0.41	0.57	0.81	1.31	2.94	5.1	6.5	9.6	13.5	19.5

-51-

Outline Dimensions (2SH)

You can download the CAD files from our website: www.3fgearbox.com

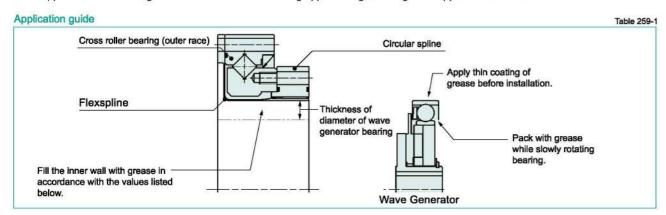
Dimensions (2SH)

					//			1/2				Unit : m
Symbol		Size	14	17	20	25	32	40	45	50	58	65
,o.	φA h6		50	60	70	85	110	135	155	170	195	215
	φΒ ₁		_	_		_	_	_	128	141	163	180.4
	B ₂			_	-			_	2.7	2.7	2.7	2.7
	С		52.5 %1	56.5 01	51.5 &1	55.5 - 8.1	65.5 %.1	79 &1	85 &1	93 & 1	106 -8.1	128 -8.1
	0000	SHF	16 *0.8	16 *0.9	9.5 +1.0	10 *1.1	12 *1.1	13 *1.1	13.5 132	15 %	16 *1.3	21 13
	D1*	SHG	16 *0.4	16 *0.4	9.5 04	10 05	12 +0.8	13 *0.5	13.5 *0.6	15 *0.7	16 *0.7	21 *0.7
	D ₂		23.5	26.5	29	34	42	51	56.5	63	73	81.5
	D ₃ *		13	14	13	11.5	11.5	15	15	15	17	25.5
	E ₁		2.4	3	3	3.3	3.6	4	4.5	5	5.8	6.5
	E		14.1	16	17.5	18.7	23.4	29	32	34	40.2	43
	Б		7	7.5	8.5	12	15	18	20	24	27	32
	F		6	6.5	7.5	10	14	17	19	22	25	29
	φG H6		48	60	70	88	114	140	158	175	203	232
	φH h6		70	80	90	110	142	170	190	214	240	276
	h		20 40.1	21.5 10.1	19 ±0.1	20 ±0.1	29 ±0.1	34 ±0.1	35 ±0.1	39.5 ±0.1	45.3 ±0.1	54.5 ±0.1
	l ₂		20 ±0.1	21.5 ±0.1	20 10.1	22.5 :01	23.5 10.1	28 :0.1	32.5 +0.1	36 :0.1	40.7 10.1	_
	ls		(12.5)	(13.5)	(12.5)	(13)	(13)	(17)	(17.5)	(17.5)	(20)	_
	J ₁		2.5	2.5		-	_	-	8	9	10	14
	J ₂		7	7	7	6.5	_	_	(27)	(30.5)	(35.3)	(40.5)
	J ₃		7	7	7	6.5	_	9.5	9.5	9.5	12.5	11.5
	J4			_	_	_	_	(7.5)	(8)	(8)	(7.5)	(11.5)
	K ₁				_	_	13.9	15.1	15.6	18.6	21.1	23.1
	K ₂			_		-	1.9	2.2	2.7	2.7	3.2	3.1
Vave	φLı		22	27	32	42	47	62	69	79	90	106
enerator	φL: j6		20	25	30	40	45	60	65	75	85	100
imensions	φL ₃ h9				_	38	_	59	59	69	84	96
	φL ₄ H7		14	19	21	29	36	46	52	60	70	80
	φL₅ f7		20	25	30	_	45				_	
	φΜ1		22	27	32	42	49	65	70	80	91.5	111
	φM ₂ h7		20	25	30	38	45	59	64	74	84	96
	φМз					_	42.5	57	62	72	81.5	96.5
	φM ₄ H7		14	19	21	29	36	46	52	60	70	80
	φN ₁ j6		20	25	30	40	45	60	65	75	85	100
	φN ₂		14.5	19.5	21.5	29.5	36.5	46.5	52.5	60.5	70.5	80.5
	O ₁		10	10	10	10	10	12	15	15	15	20
	O ₂		22.5	24.5	(19.5)	22.5	(30.5)	(35)	35	41	48	54
	O ₂		20	22	22	23	25	32	35	37	43	54
	P ₁		3	3	6	6	6	6	6	6	8	6
	P ₂		M3	M3	M3×6	M3×6	M3×6	M4×8	M4×8	M4×8	M4×8	M5×10
	φPs			_	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	Q ₁		8	12	12	12	12	12	18	12	16	16
	φQ₂		3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
	φQ ₃		0.25	0.25	0.25	0.25	0.25	0.3	0.3	0.5	0.5	0.5
	φR		64	74	84	102	132	158	180	200	226	258
	φS		_		25.5	33.5	40.5	52	58	67	77	88
	T ₁		2	4	4	4	4	6	6	6	8	8
	Tz		M3×6	M3×6	M3×8	M3×8	M4×8	M4×10	M4×10	M5×12	M5×12	M6×16
	T ₃ (angle)		22.5°	15°	15°	15°	15°	15°	10°	15°	11.25°	11.25°
	φU		44	54	62	77	100	122	140	154	178	195
	V ₁		12 E.A. 8	20 E. A. 16	16	16	16	16	12	16	12	16
	V ₂		M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
	V ₃		φ3.5×6	φ3.5×6.5	φ3.5×7.5	φ4.5×10	φ5.5×14	φ6.6×17	φ9×19	φ9×22	φ11×25	φ11×29
	V ₄		0.25	0.25	0.25	0.25	0.25	0.3	0.5	0.5	0.5	0.5
	W ₁		4	4	4	4	4	4	4	8	6	8
	W ₂		M3×6	M3×6	M3×8	M3×10	M4×16	M5×20	M5×20	M5×25	M6×25	M6×30
inimum	фа		38	45	53	66	86	106	119	133	154	172
ousing	b		1	1	1.5	1.5	1.5	2	2	2	2.5	2.5
earance	φс		31	38	45	56	73	90	101	113	131	150
	d		1.7	2.1	2	2	2	2	2.3	2.5	2.9	3.5
	e		D49585	D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D216238
	~		2 10000	555500								

- As the flexspline is subject to elastic deformation, the housing clearance should be φa, b, c or more and it should not exceed.
- *The D₁ and D₃ sizes indicated by an asterisk are the mounting positions in the shaft direction and allowance of the three parts (wave generator, flexspline, circular spline). Strictly observe these tolerances.
- The circular spline of sizes 14 to 40 does not have an O-ring groove (symbol: f) for sealing. Account for sealing during design and installation.

-53-

Mass (2SH)										Table 259-1 Unit: kg
Symbol Size	14	17	20	25	32	40	45	50	58	65
Mass	0.45	0.63	0.89	1.44	3.1	5.4	6.9	10.2	14.1	20.9

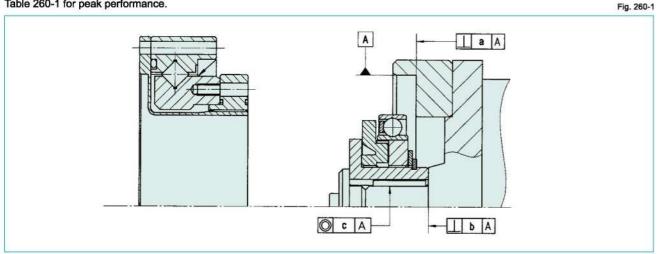

Lubrication

Standard lubrication for SHG/SHF series is grease.

See "Engineering data" on Page 016 for details of the lubricant.

Application guide

As the gear unit is shipped with the outer race of the cross roller bearing and the flexspline temporarily bolted together, grease is not applied other than the gear teeth. Refer to the following application guide for grease application instructions

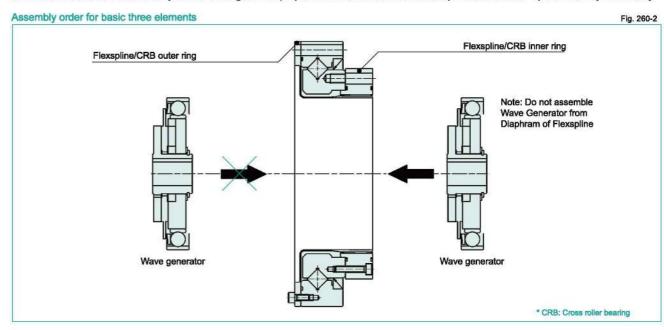


Application quantity

							_				Unit: g
Application	Size	14	17	20	25	32	40	45	50	58	65
Horizont	tal use	5.8	11	18	32	64	120	185	235	385	495
Vertical Output s	haft facing up	7.5	13	19	37	74	130	200	255	400	530
use Output sh	aft facing down	8.9	15	22	42	84	150	230	290	480	630

Installation accuracy

Maintain the recommended tolerances shown in Figure 260-1 and Table 260-1 for peak performance.


Size	14	17	20	25	32	40	45	50	58
a	0.011	0.015	0.017	0.024	0.026	0.026	0.027	0.028	0.031
160	0.017	0.020	0.020	0.024	0.024	0.024	0.032	0.032	0.032
b	(800.0)	(0.010)	(0.010)	(0.012)	(0.012)	(0.012)	(0.012)	(0.015)	(0.015)
	0.030	0.034	0.044	0.047	0.047	0.050	0.063	0.066	0.068
С	(0.016)	(0.018)	(0.019)	(0.022)	(0.022)	(0.022)	(0.024)	(0.030)	(0.033)

^{*} The value in the parentheses indicates that Wave Generator does not have an Oldham coupling.

Installation Recommendations

Installation sequence

The wave generator is installed after the flexspline and circular spline. If the wave generator is not inserted into the flexspline last, gear teeth scuffing damage or improper eccentric gear mesh may result. Installation resulting in an eccentric tooth mesh (Dedoidal) will cause noise and vibration, and can lead to early failure of the gear. For proper function, the teeth of the flexspline and Circular Spline mesh symmetrically.

Precautions on assembly

It is extremely important to assemble the gear accurately and in proper sequence. For each of the three components, utilize the following precautions.

Wave generator

Table 259-2

Unit: mm

- Avoid applying undue axial force to the wave generator during installation. Rotating the wave generator bearing while inserting it is recommended and will ease the process.
- Extra care must be given to ensure that concentricity and inclination are within the specified limits (see page 253).
- Installation bolts on the Wave Generator and Flexspline should not interfere each other.

Circular spline

The circular Spline must not be deformed in any way during the assembly. It is particularly important that the mounting surfaces are prepared correctly.

- Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
- Especially in the area of the screw holes, burrs or foreign matter should not be present.
- Adequate relief in the housing corners is needed to prevent interference with the corner of the circular spline.
- The circular spline should be rotatable within the housing. Be sure there is not interference and that it does not catch on anything.
- Bolts should not rotate freely when tightening and should not have any irregularity due to the bolt hole being misaligned or oblique.
- 6. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them with the specified torque. Tighten them in an even, crisscross pattern.
- Avoid pinning the circular spline if possible as it can reduce the rotational precision and smoothness of operation.

Flexspline

- Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
- Especially in the area of the screw holes, burrs or foreign matter should not be present.
- Adequate clearance with the housing is needed to ensure no interference especially with the major axis of flexspline
- Bolts should rotate freely when installing through the mounting holes of the flexspline and should not have any irregularity due to the shaft bolt holes being misaligned or oblique.
- 5. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them to the specified torque. Tighten them in an even, crisscross pattern.
- The flexspline and circular spline are concentric after assembly. After installing the wave generator bearing, if it rotates in unbalanced way, check the mounting for dedoidal or non-concentric installation.
- Care should be taken not to damage the flexspline diaphragm or gear teeth during assembly.

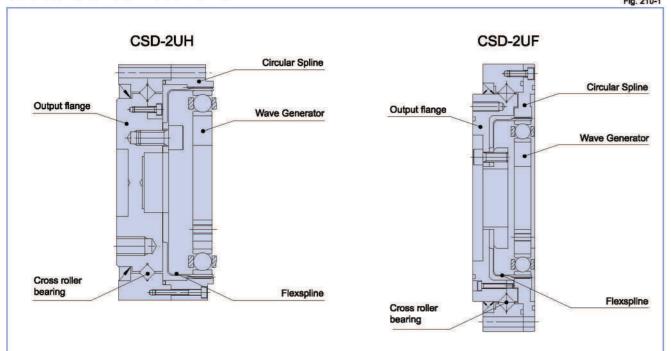
Avoid hitting the tips of the flexpline teeth and circular spline teeth. Avoid installing the CS from the open side of the flexspline after the wave generator has been installed.

Rust prevention

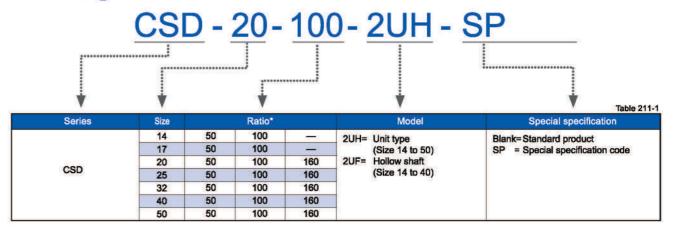
Although Harmonic Drive® gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.

Features

CSD Gear Units


Available in two form factors, the CSD series gear units offer zero backlash while remaining lightweight and compact. These units are ideal for humanoid robots, aerospace, semiconductor equipment and many other critical applications. Ratios available are from 50:1 to 160:1.

Features ----


- Zero backlash
- Compact design
- Hollow shaft (2UF only)
- High-load capacity
- Lightweight

Structure of CSD Gear Unit

Fig. 210-1

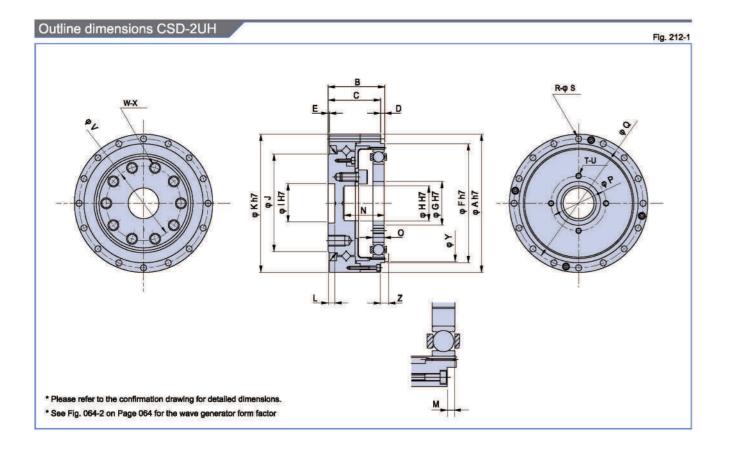
Ordering Code ————

^{*} The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline

Technical Data —

Rating table

CSD-2UH Table 211-2


Size	Ratio		Torque at Orpm		Repeated Torque		r Average orque		Momentary Torque	Maximum Input Speed (rpm)	Limit for Average Input Speed (rpm)		ent of ertia
	Astronac	Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Grease lubricant	Grease lubricant	I(×10 kgm²)	J(x10°kgfms²)
**	50	3.7	0.38	12	1.2	4.8	0.49	24	2.4	0500	0500	0.004	0.004
14	100	5.4	0.55	19	1.9	7.7	0.79	35	3.6	8500	3500	0.021	0.021
2-7	50	11	1.1	23	2.3	18	1.9	48	4.9	7000	0500	0.054	0.055
17	100	16	1.6	37	3.8	27	2.8	71	7.2	7300	3500	0.054	0.055
	50	17	1.7	39	4.0	24	2.4	69	7.0				
20	100	28	2.9	57	5.8	34	3.5	95	9.7	6500	3500	0.090	0.092
	160	28	2.9	64	6.5	34	3.5	95	9.7	201033404	Condeposes	2.000000000001	630040944
	50	27	2.8	69	7.0	38	3.9	127	13				
25	100	47	4.8	110	11	75	7.6	184	19	5600	3500	0.282	0.288
	160	47	4.8	123	13	75	7.6	204	21		100000		0.00
	50	53	5.4	151	15	75	7.6	268	27				
32	100	96	10	233	24	151	15	420	43	4800	3500	1.09	1.11
	160	96	10	261	27	151	15	445	45				
	50	96	10	281	29	137	14	480	49				
40	100	185	19	398	41	260	27	700	71	4000	3000	2.85	2.91
	160	206	21	453	46	316	32	765	78		1700000 2.55 500		
	50	172	18	200	51	247	25	1000	102				
50	100	329	34	686	70	466	48	1440	147	3500	2500	8.61	8.78
	160	370	38	823	84	590	60	1715	175		54528000500	50000000	95 VS ASS

(Note) Moment of inertia: $I = \frac{1}{4} GD^2$

■ CSD-2UF

Size	Ratio		Torque at Orpm		Repeated Torque		r Average irque		Momentary Torque	Maximum Input Speed (rpm)	Limit for Average Input Speed (rpm)		ent of ertia
		Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Grease lubricant	Grease lubricant	I(×10 ⁻¹ kgm ²)	J(x10 ⁻⁵ kgfms ²)
14	50	3.7	0.38	12	1.2	4.8	0.49	24	2.4	0500	0500	0.004	0.004
14	100	5.4	0.55	19	1.9	7.7	0.79	35	3.6	8500	3500	0.021	0.021
17	50	11	1.1	23	2.3	18	1.9	48	4.9	7000	2500	0.054	0.055
17	100	16	1.6	37	3.8	27	2.8	71	7.2	7300	3500	0.054	0.055
	50	17	1.7	39	4.0	24	2.4	69	7.0				
20	100	28	2.9	57	5.8	34	3.5	95	9.7	6500	3500	0.090	0.092
	160	28	2.9	64	6.5	34	3.5	95	9.7				
	50	27	2.8	69	7.0	38	3.9	127	13				
25	100	47	4.8	110	11	75	7.6	184	19	5600	3500	0.282	0.288
	160	47	4.8	123	13	75	7.6	204	21		via Caracian	524.549.55E1	L. C.
	50	53	5.4	151	15	75	7.6	268	27				
32	100	96	10	233	24	151	15	420	43	4800	3500	1.09	1.11
	160	96	10	261	27	151	15	445	45		Terrorists	Officers.	100/01/200
	50	96	10	281	29	137	14	480	49				12
40	100	185	19	398	41	260	27	700	71	4000	3000	2.85	2.91
	160	206	21	453	46	316	32	765	78				

(Note) Moment of inertia: $I = \frac{1}{4} GD^2$

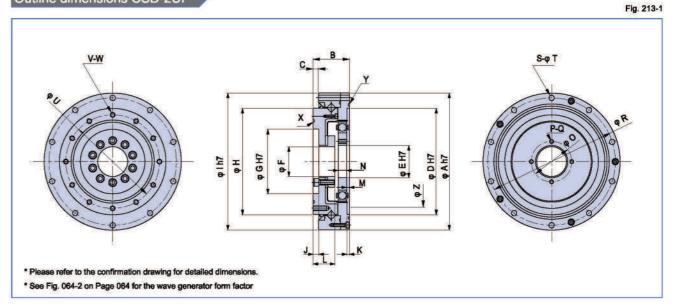

Dimensions CSD-2UH

Table 212-1 Unit : mm

ol Size	14	17	20	25	32	40	50
φA h7	55	62	70	85	112	126	157
В	25	26.5	29.7	37.1	43	51.7	62.5
С	23	24.5	27.7	34.1	40	47.7	58.5
D	2	2	2	3	3	4	4
E	0.5	0.5	0.5	0.5	1	1	1
φF h7	42.5	49.5	58	73	96	108.5	136
φG H7	11	15	20	24	32	40	50
φH H7	11	11	16	20	30	32	44
φl H7	12	14	18	24	32	36	48
φJ	31	38	45	58	78	90	112
φK h7	55	62	70	85	112	126	157
L	5	5	5	5.5	5.5	6	7
М	1.7 *02	1.7 *82	1.7 *02	2.6 *02	2.5 %2	3.4 *82	3.2 02
N	14.8	16.3	18.8	23.7	30.6	36.5	44.3
0	4 &1	5 -8.1	5.2 &1	6.3 &1	8.6 -8.1	10.3 &1	12.7 &1
φP(PCD)	17	21	26	30	40	50	60
φQ(PCD)	49	56	64	79	104	117.5	147
R	6	10	12	18	18	18	22
φS	3.4	3.4	3.4	3.4	4.5	5.5	6.6
T	4	4	4	4	4	4	4
U	M3	M3	М3	M3	M4	M5	M6
φV(PCD)	25	27	34	42	57	72	88
W	10	8	8	8	10	10	10
Х	M3×7	M5×8	M6×9	M8×12	M8×12	M10×15	M12×18
φΥ	38	45	53	66	86	106	133
Z	3	3	3.5	4.5	5	6.5	7.5
Mass (kg)	0.35	0.46	0.65	1.2	2.4	3.6	6.9

Due to different manufacturing methods (casting, machining) of components, tolerances also vary. For dimensions without specified tolerances, please consult our company or authorized agents for the tolerance range

Outline dimensions CSD-2UF

						Tab Ur
Size	14	17	20	25	32	40
φA h7	70	80	90	110	142	170
В	22	22.7	26.8	31.5	37	45
С	0.5	0.5	2.3	2.1	2.8	6.5
φD H7	48	56	64	80	106	132
φE H7	11	15	20	24	32	40
φF	9	9	18	22	29	37
φG H7	30	34	40	52	70	80
φН	49	59	69	84	110	132
φl h7	70	80	90	110	142	170
J	4.9	5.4	4.8	5.5	6	7
K	2.5	2.5	2.5	3	3	3
Ľ	12.9	13.4	16.8	19.5	22	27
М	2.8 02	2.8 102	2.8 *02	3.4 *0.2	3.5 02	3.6 *02
N	4 &1	5 - 0.1	5.2 &1	6.3 &1	8.6 -0.1	10.3 %
φO(PCD)	17	21	26	30	40	50
Р	4	4	4	4	4	4
Q	M3	M3	M3	M3	M4	M5
φR(PCD)	64	74	84	102	132	158
S	6	8	8	10	10	10
φТ	3.4	3.4	3.4	4.5	5.5	6.6
φU(PCD)	42	50	60	73	96	116
٧	8	10	8	8	8	12
W	M3×5	M3×6	M4×8	M5×8	M6×10	M6×10
Х	34.5×0.80	38.0×1.50	S48	S60	S80	S100
Y	49.0×1.50	59.4×1.20	S70	S85	S115	S140
φZ	38	45	53	66	86	106
Mass (kg)	0.50	0.66	0.94	1.7	3.3	5.7

●由于零部件的制造方法(铸造、机械加工)不同,公差也存在差异。关于没有注明公差的尺寸,如需了解公差范围,请咨询本公司或授权代理商。

sitional ac	curacy	See "E	See "Engineering data" for a description of terms.						
s	ize	14	17	20	25	32	40	50	
Positional	×10 ⁻⁴ rad	4.4	4.4	2.9	2.9	2.9	2.9	2.9	
Accuracy	arc min	1.5	1.5	1.0	1.0	1.0	1.0	1.0	

Hyste	resis loss	See "Engineering data" for a description of terms.								
Ratio	Unit Size	14	17	20	25	32	40	50		
-2	×10 ⁻⁴ rad	7.3	4.4	4.4	4.4	4.4	4.4	4.4		
50	arc min	2.5	1.5	1.5	1.5	1.5	1.5	1.5		
100 or	×10 ⁻⁴ rad	5.8	2.9	2.9	2.9	2.9	2.9	2.9		
more	arc min	2.0	1.0	1.0	1.0	1.0	1.0	1.0		

Item		Unit Size	14	17	20	25	32	40	50
	T ₁	Nm	2.0	3.9	7.0	14	29	54	108
	11	kgfm	0.2	0.4	0.7	1.4	3.0	5.5	11
	T ₂	Nm	6.9	12	25	48	108	196	382
	12	kgfm	0.7	1.2	2.5	4.9	11	20	39
	K ₁	×10 ⁴ Nm/rad	0.29	0.67	1.1	2.0	4.7	8.8	17
	IXI	kgfm/arc min	0.085	0.2	0.32	0.6	1.4	2.6	5.0
	K ₂	×10 ⁴ Nm/rad	0.37	0.88	1.3	2.7	6.1	11	21
	IN2	kgfm/arc min	0.11	0.26	0.4	0.8	1.8	3.4	6.3
Reduction	Кз	×10 ⁴ Nm/rad	0.47	1.2	2.0	3.7	8.4	15	30
ratio	IN3	kgfm/arc min	0.14	0.34	0.6	1.1	2.5	4.5	9.0
50	θ1	×10 ⁻⁴ rad	6.9	5.8	6.4	7.0	6.2	6.1	6.4
	01	arc min	2.4	2.0	2.2	2.4	2.1	2.1	2.2
	θ2	×10 ⁻⁴ rad	19	14	19	18	18	18	18
	02	arc min	6.4	4.6	6.6	6.1	6.1	5.9	6.2
	K ₁	×10 ⁴ Nm/rad	0.4	0.84	1.3	2.7	6.1	11	21
	N	kgfm/arc min	0.12	0.25	0.4	0.8	1.8	3.2	6.3
	K ₂	×10 ⁴ Nm/rad	0.44	0.94	1.7	3.7	7.8	14	29
	I/V2	kgfm/arc min	0.13	0.28	0.5	1.1	2.3	4.2	8.5
Reduction	Кз	×10 ⁴ Nm/rad	0.61	1.3	2.5	4.7	11	20	37
ratio	rva.	kgfm/arc min	0.18	0.39	0.75	1.4	3.3	5.8	11
100 or more	θ1	×10 ⁻⁴ rad	5.0	4.6	5.4	5.2	4.8	4.9	5.1
	01	arc min	1.7	1.6	1.8	1.8	1.7	1.7	1.7
	θ2	×10 ⁻⁴ rad	16	13	15	13	14	14	13
	02	arc min	5.4	4.3	5.0	4.5	4.8	4.8	4.6

* The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

Starting torque

See "Engineering data" for a description of terms. The values in the table below vary depending on the use conditions,

- COD OUL

COD-201					la	Table 214-4 Unit: North			
Ratio Size	14	17	20	25	32	40	50		
50	4.4	6.7	8.9	16	32	55	102		
100	2.8	3.8	5.1	9.1	20	32	60		
160		(manage)	20	72	15	26	47		

CSD-20F	10			Table	e 214-5	Unit: Nom	
Ratio Size	14	17	20	25	32	40	
50	5.3	7.5	9.7	17	34	58	
100	3.2	4.2	5.5	9.6	21	33	
160	-	: 	4.1	7.4	16	27	

Table 215-2 Unit: Nm

Table 215-3 Unit: Nm

Backdriving torque

See "Engineering data" for a description of terms. The values in the table below vary depending on the use conditions, use them as reference values.

■ CSD-2UH						1	Table 215-1 Unit: Nm
Ratio	14	17	20	25	32	40	50
50	2.9	4.3	5.2	9.5	19	33	61
100	3.5	4.6	6.0	11	23	38	71
160	-		7.4	13	30	48	89

■ CSD-2UF

Ratio Size	14	17	20	25	32	40
50	3.3	4.7	5.6	10	20	34
100	3.9	5.0	6.4	11	24	39
160	(5-10)	()	7.8	14	31	49

Ratcheting torque See "Engineering data" for a description of terms.

Size	14	17	20	25	32	40	50
50	88	150	220	450	980	1800	3700
100	84	160	260	500	1000	2100	4100
160			220	450	980	1800	3600

Buckling torque	See "Engine	ering data" for a descri	ption of terms.			T	able 215-4 Unit: Nm
Size	14	17	20	25	32	40	50
Total reduction ratio	190	330	560	1000	2200	4300	8000

Checking output bearing

A precision cross roller bearing is built in the gear unit to directly support the external load (output flange). Check the maximum moment load, life of the bearing and static safety coefficient to fully bring out the performance of the unit type. See Page 030 to 034 of "Engineering data" for each calculation formula.

Checking procedure

(1) Checking the maximum moment load (Mmax) Calculate the maximum moment load (M max). Maximum moment load (M max) ≤ allowable moment (Mc) (2) Checking the life late the radial load coefficient (x) and the axial load Calculate the radial load (Frav) and the average axial load (Faav). (3) Checking the static safety coefficient Calculate the static equivalent radial load coefficient (Po). Check the static safety coefficient. (fs)

Output bearing specifications

0.119

0.0192

The specifications of the cross roller bearing are shown in Table 220-1 and -2.

348

3550

CSD-2UH Table 220-1 Basic rated load Allowable moment load Mc Moment stiffness Km load Fa Basic dynamic rated load C Basic static rated load Co radial load ×10⁴ Size ×102N ×10²N / arc-min ×10²N ×10²N 14 0.0095 47 60.7 4.2 4.38 1.3 10.1 6.74 0.035 480 620 41 17 7.75 2.3 11.3 7.58 0.0425 0.0099 52.9 540 75.5 770 64 6.5 20 0.050 0.0102 57.8 590 90 920 12.8 3.8 12.4 8.28 91 9.3 25 0.062 0.0130 96.0 980 151 1540 24.2 7.2 20.5 13.8 156 32 53.9 16 32 1 2 15 0.080 0.0144 150 1530 250 2550 313 32 40 0.096 0.0151 213 2170 365 3720 91 27 45.6 3.05 450 46

6140

CSD-2UF

759

77

171

Table 221-1

51

74.4

4.99

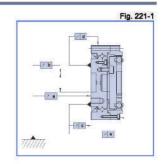
	Pitch circle dia. of a roller	Offset		Basic ra	ted load		Allowable mo	Allowable moment load Mc		iffness Km	Allowable axial	
Size	dp	R	Basic dynamic	rated load C	Basic static r	ated load Co			×10 ⁴	kgfm	load Fa	radial load Fr
	m	m	×10 ² N	kgf	×10 ² N	kgf	Nm	kgfm	Nm / rad	/ arc-min	×10 ² N	×10 ² N
14	0.050	0.0118	57.8	590	90	920	91	9.3	12.8	3.8	12.4	8.28
17	0.060	0.0123	104	1060	163	1670	124	12.6	15.4	4.6	22.2	14.9
20	0.070	0.0128	146	1490	220	2250	187	19.1	25.2	7.5	31.2	20.9
25	0.085	0.0134	218	2230	358	3660	258	26.3	39.2	11.6	46.6	31.2
32	0.111	0.0168	382	3900	654	6680	580	59.1	100	29.6	81.7	54.7
40	0.133	0.0215	433	4410	816	8330	849	86.6	179	53.2	92.6	62.0

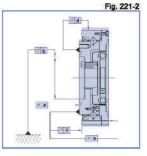
50

602

- * The basic dynamic rated load means a certain static radial load so that the basic dynamic rated life of the roller bearing is one million rotations.

 * The basic static rated load means a static load that gives a certain level of contact stress (4 kN/mm²) in the center of the contact area between the rolling element receiving the maximum load and the orbit.
- * The value of the moment stiffness is the average value.
- * Allowable moment load is the maximum moment load that may be applied to the output shaft. Please adhere to these values for optimum performance. The value of the moment stiffness is the reference value. The lower-limit value is approximate 80% of the displayed value. Allowable axial or radial load is the value that satisfies the reducer life when either a genuine radial load or an axial load is applied to the main shaft. (When radial load is Lr+R=0mm, and axial load is La=0mm)


Recommended tolerances for assembly Recommended tolerances for assembly


Input: Wave generator Output: Circular spline Fixed: Flexspline

CSD-2UH

							Unit: mm
Symbol Size	14	17	20	25	32	40	50
а	0.010	0.010	0.010	0.015	0.015	0.015	0.018
b	0.010	0.012	0.012	0.013	0.013	0.015	0.015
С	0.007	0.007	0.007	0.007	0.007	0.007	0.007
d	0.010	0.010	0.010	0.010	0.010	0.015	0.015
е	0.025	0.025	0.025	0.035	0.037	0.037	0.040

Symbol Size	14	17	20	25	32	40
а	0.010	0.010	0.010	0.015	0.015	0.015
b	0.010	0.010	0.010	0.010	0.013	0.013
С	0.010	0.010	0.010	0.010	0.013	0.013
d	0.010	0.010	0.010	0.010	0.013	0.013
е	0.031	0.031	0.031	0.041	0.047	0.047

-61-

Fig. 224-1

Design Guide

Installation and transmission torque

Fig. 223-1 CSD-2UH CSD-2UF Output flange side Output flange side

Installation on output flange side and resulting transmission torque

■ CSD-2UH

The state of the s								INDIO ELO
tem	Size	14	17	20	25	32	40	50
Number of bolts		10	8	8	8	10	10	10
Bolt size		МЗ	M5	M6	M8	M8	M10	M12
Pitch circle	mm	25	27	34	42	57	72	88
Bolt tightening torque	Nm	2.4	10.8	18.4	44	44	74	128
Torque transmission capacity (bolt only)	Nm	50	122	217	486	824	1665	2933

■ CSD-2UF

CSD-2UF							Table 223-
tem	Size	14	17	20	25	32	40
Number of bolts		8	10	8	8	8	12
Bolt size		МЗ	M3	M4	M5	M6	M6
Pitch circle	mm	42	50	60	73	96	116
Bolt tightening torque	Nm	2.4	2.4	5.4	10.8	18.4	18.4
Torque transmission capacity (bolt only)	Nm	70	104	167	329	765	1109

■ Bolt connection to housing and resulting transmission torque

CSD-2UH

CSD-20H								Table 223-3
Item	Size	14	17	20	25	32	40	50
Number of bolts		6	10	12	18	18	18	22
Bolt size		МЗ	М3	M3	M3	M4	M5	M6
Pitch circle	mm	49	56	64	79	104	117.5	147
Bolt tightening torque	Nm	2.4	2.4	2.4	2.4	5.4	10.8	18.4
Torque transmission	Nm	43	82	112	207	461	833	1804

CSD-2UF

							INDIO ZZJ
tem	Size	14	17	20	25	32	40
Number of bolts	1	6	8	8	10	10	10
Bolt size		М3	M3	M3	M4	M5	M6
Pitch circle	mm	64	74	84	102	132	158
Bolt tightening torque	Nm	2.4	2.4	2.4	5.4	10.8	18.4
Torque transmission capacity (bolt only)	Nm	80	123	140	359	743	1259

- (Table 223-1 to 223-4/Notes)

 1. The material of the thread must withstand the clamp torque.
- Recommended bolt: JIS B 1176 socket head cap screw / Strength range : JIS B 1051 over 12.9
- Torque coefficient: K=0.2
- Clamp coefficient: A=1.4
- 5. Tightening friction coefficient μ =0.15

Recommended tolerances for assembly

For peak performance of the gear, it is essential that the following tolerances be observed when assembly is complete. Pay careful attention to the following points and maintain the recommended assembly tolerances to avoid grease leakage.

- · Warp and deformation on the mounting surface
- · Blocking of foreign matter
- . Problems caused by burrs, raised surfaces and location around the tap area of the mounting holes
- · Insufficient chamfering on the housing mount
- · Insufficient radii on the housing mount

Recommended Tolerances for Assembly

Fig. 222-1 CSD-2UH CSD-2UF l a A Case mating face A H7 ___ b A ⊥ b A Wave generator Wave generator mounting face mounting face О фс А Recommended shaft Recommended shaft tolerance h6 tolerance h6

Tolerances for Asse	nces for Assembly CSD-2UH										
Symbol Size	14	17	20	25	32	40	50				
а	0.011	0.015	0.017	0.024	0.026	0.026	0.028				
b	0.008	0.010	0.012	0.012	0.012	0.012	0.015				
фс	0.016	0.018	0.019	0.022	0.022	0.024	0.030				

olerances for Asse	embly CSD-2UF					able 222-2 Unit: mr
Symbol Size	14	17	20	25	32	40
а	0.011	0.015	0.017	0.024	0.026	0.026
b	0.008	0.010	0.012	0.012	0.012	0.012
oc.	0.016	0.018	0.019	0.022	0.022	0.024

Lubrication

Table 223-1

Grease lubrication is standard for the CSD-2UH and CSD-2UF. There is no need to add or apply grease upon installation since the products are shipped with the grease applied. See table below for recommended housing dimensions. These dimensions must be maintained to prevent damage to the gear and to maintain a proper grease cavity.

Recommended housing dimensions

					Ta	Table 224-1			
Size Symbol	14	17:	20	25	32	40	50		
a*	1	1	1.5	1.5	2	2.5	3.5		
a**	3	3	4.5	4.5	6	7.5	10.5		
φb +0.5	16	26	30	37	37	45	45		

^{*} For the wave generator facing downward ** For the wave generator facing upward

The following sealing mechanism is required to prevent grease leakage and maintain the high durability of the gear.

- · Rotating Parts -· Oil seal (with a spring). Surface should be smooth (no scratches)
- O-ring and seal adhesive.

 Take care regarding distortion on the plane and how the O-ring is engaged. · Mating flange
- · Screw hole area... Screws should have a thread lock (Locktite 242 is recommended) or seal adhesive.

(Note) If you use Harmonic Grease® 4BNo.2 lubrication, strict sealing is required.

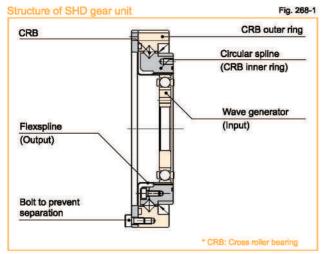
CSD-2UH CSD-2UF

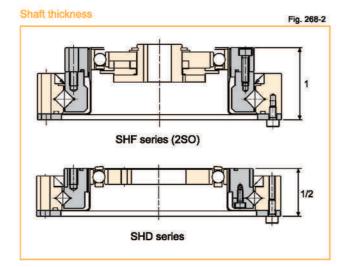
Sealing area and the recommended sealing method for the unit type Table 224-3

Α	rea requiring sealing	Recommended sealing method
Output	Pass-through hole in the center of the output flange and the output flange mating face	Use O-ring (supplied with the product)
side	Mounting screw area	Screw lock agent with sealing effect (Locktite 242 is recommended)
20100	Flange mating face	Use O-ring (supplied with the product)
Input side	Motor output shaft	Please select a motor which has an oil seal on the output shaft.

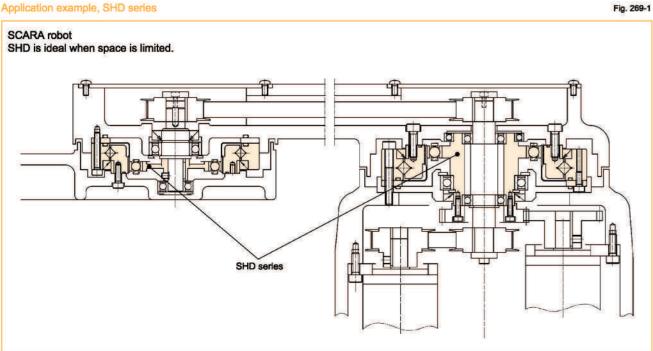
Table 270-1

Features -

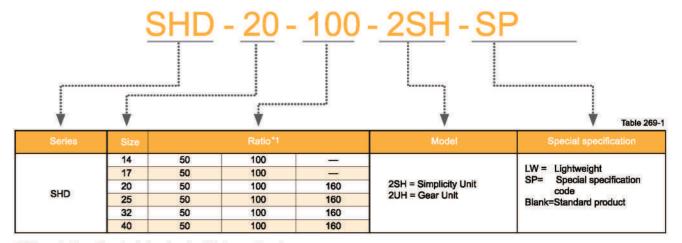



SHD series

Axially compact, these gear units feature a large hollow input shaft and a robust cross roller bearing so loads can be mounted directly to the unit without the need for additional support bearings


Features of SHD series -

- Zero Backlash
- Ultra-flat design 15% thinner than the SHF Series
- Large Hollow Input Shaft
- Accuracy <1 arc-min (most sizes)
- Rigid cross roller output bearing
- Lightweight 30% lower weight than Standard SHF Series



Application example, SHD series

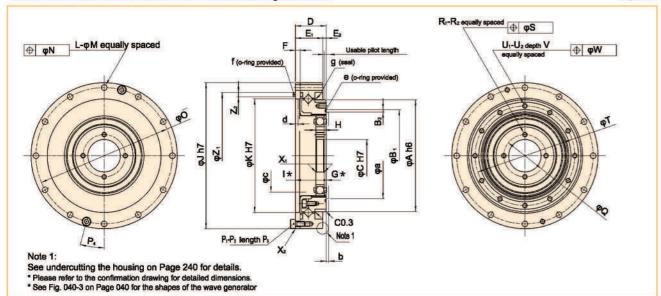
Ordering Code —

^{*1} The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline

Technical Data —

THE OWNER OF THE OWNER, THE OWNER			-	-	
Ratir	20	ta	ы		
vaui	II.	ua	ш		

	Ratio		Torque at Opm		Repeated Torque			Limit for N Peak	Momentary Torque	Maximum Input Speed (rpm)	Limit for Average Input Speed (rpm)		ent of ertia
		Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Grease lubricant	Grease lubricant	I ×10°kam²	J ×10°kgfms
	50	3.7	0.38	12	1.2	4.8	0.49	23	2.3	0500	2500	0.004	0.00
14	100	5.4	0.55	19	1.9	7.7	0.79	35	3.6	8500	3500	0.021	0.02
17	50	11	1.1	23	2.3	18	1.9	48	4.9	7000	0500	0.054	0.05
37	100	16	1.6	37	3.8	27	2.8	71	7.2	7300	3500	0.054	0.05
	50	17	1.7	39	4.0	24	2.4	69	7.0				
20	100	28	2.9	57	5.8	34	3.5	95	10	6500	3500	0.090	0.09
	160	28	2.9	64	6.5	34	3.5	95	10		10000000	OCHOCADALIA.	10000
	50	27	2.8	69	7.0	38	3.9	127	13				
25	100	47	4.8	110	11	75	7.6	184	19	5600	3500	0.282	0.28
	160	47	4.8	123	13	75	7.6	204	21		50000	556556500	1000000
	50	53	5.4	151	15	75	7.6	268	27			3	
32	100	96	10	233	24	151	15	420	43	4800	3500	1.09	1.11
	160	96	10	261	27	151	15	445	45				
	50	96	10	281	29	137	14	480	49				
40	100	185	19	398	41	260	27	700	71	4000	3000	2.85	2.91
	160	206	21	453	46	316	32	765	78				


(Note) 1. Moment of Inertia: I=\frac{1}{4}GD^2
2. See Rating Table Definitions on Page 12 for details of the terms.

-65-

Outline Dimensions SHD-2SH

You can download the CAD files from our website: www.3fgearbox.com

Fig. 270-1

_	Size	2002	100000		\$		ble 271-1 Unit:
nbol	5/25	14		20	25	32	40
	φA h6	49 -0.016	59 -8.019	69 -0.018	84 - 4.022	110 -0.022	132 -8.025
	φΒ,	39.1*61	48'81	56.8 ^{+0.1}	70.5 61	92*61	112.4*61
	B ₂	0.80.16	1.1*0.25	1.4 0 25	1.7 0.25	2*0.25	2.2 0 0 0
	φС Н7	11'0018	15*0018	20*0.021	24*0.021	32*0.025	40*0.028
	D	17.5 ±0.1	18.5 ±0.1	19 ±0.1	22 ±0.1	27.9 ±0.1	33 ±0.1
	E	15.5	16.5	17	20	23.6	28
	E,	2	2	2	2	4.3	5
	F	2.4	3	3	3.3	3.6	4
	G*	1.8	1.6	1.2	0.4	0.6	0.8
	Н	4-01	5 - 81	5.2 -0.1	6.35 -0.1	8.6 -8.1	10.3 -61
	1*	15.7 - 02	16.9 -62	17.8 -02	21.6 -62	27.3 -02	32.2 - 02
	φJ h7	70 -0.000	80 -aoso	90 0,005	110 -0.005	142 -0.040	170 -8.040
	φK H7	50°0.025	61*0.000	71*0.000	88*0.035	114*0.035	140 0.040
	L	8	12	12	12	12	12
	φΜ	3.5	3.5	3.5	4.5	5.5	6.6
	φN	0.25	0.25	0.25	0.25	0.25	0.0
	φΟ	64	74	84	102	132	158
	P ₁	2	2	2	4	4	4
	P ₂	M3	M3	M3	M3	M4	M4
	P ₁	6	6 6	6 6	1VI3	. (8-510)	10
		SALE PORTUGATION CO.		The state of the s		10	
	P ₄	22.5°	15°	15*	15°	15°	15°
	φQ	17	21	26	30	40	50
	R,	4	4	4	4	4	4
	R ₂	M3	M3	M3	M3	M4	M5
	φS	0.25	0.25	0.25	0.25	0.25	0.25
	φТ	43	52	61.4	76	99	120
	U,	8	12	12	12	12	12
	U ₂	M3	M3	M3	M4	M5	M6
	V	4.5	4.5	4.5	6	8	9
	φW	0.25	0.25	0.25	0.25	0.25	0.3
	X,	C0.4	C0.4	C0.5	C0.5	C0.5	C0.5
	X,	C0.4	C0.4	C0.5	C0.5	C0.5	C0.5
	Z,	57°°1	68.1 ^{*0.1}	78*81	94.8'01	123'61	148*8*
	Z _z	2025	2*0.26	2.7 0.25	2.4 0 25	2.7 0.25	2.7 0 25
	фа	36.5	45	53	66	86	106
mum sing	b	1	1	1.5	1.5	2	2.5
rance	ФС	31	38	45	56	73	90
	d	1.4	1.8	1.7	1.8	1.8	1.8
	0	d37.1d0.6	d45.4d0.8	d53.28d0.99	d66.5d1.3	d87.5d1.5	d107.5d1.6
	f	d54.38d1.19	d64.0d1.5	d72.0d2.0	d88.62d1.78	d117.0d2.0	d142d2.0
	g	D49585	D59685	D69785	D84945	D1101226	D1321467
	h	1.5	1.5	1.5	1,5	3.3	4
	Mass (kg)	0.33	0.42	0.52	0.91	1.87	3.09

- The following dimensions can be modified to accommodate:
 Wave Generator: C
 Flexspline: O and P
 Circular Spline: X1 and X2
- *The G and I sizes indicated by an asterisk are the mounting positions in the shaft direction and allowance of the three parts (wave generator, flexspline, circular spline). Strictly observe these sizes as they affect the performance and strength.
- As the flexspline is subject to elastic deformation, the inner wall should be φa, b, c or more and
 it should not exceed φd to prevent possible contact with the housing.

Table 273-1 Unit: X10⁴rad (arc⋅min)			Sec	ccuracy	ositional A		
40	32	25	20	17	14		Size
2.9	2.9	2.9	2.9	4.4	4.4	× 10 ⁻⁴ rad	Positional
1.0	1.0	1.0	1.0	1.5	1.5	arc min	Accuracy

Hysteresis loss See "Engineering data" for a description of terms.									
Ratio	Size	14	17	20	25	32	40		
50	×10 ⁻⁴ rad	7.3	5.8	5.8	5.8	5.8	5.8		
50	arc min	2.5	2.0	2.0	2.0	2.0	2.0		
100 or	×10 ⁻⁴ rad	5.8	2.9	2.9	2.9	2.9	2.9		
more	arc min	2.0	1.0	1.0	1.0	1.0	1.0		

mbol	_	Size	14	17	20		32	40
No.	Ţ.	Nm	2.0	3.9	7.0	14	29	54
	T,	kgfm	0.2	0.4	0.7	1.4	3.0	5.5
	-	Nm	6.9	12	25	48	108	196
12	T2	kgfm	0.7	1.2	2.5	4.9	11	20
		×10 ⁴ Nm/rad	0.29	0.67	1.1	2.0	4.7	8.8
K₁ K₂ Ratio 50 K₃	K,	kgfm/arc min	0.085	0.2	0.32	0.6	1.4	2.6
		×10 ⁴ Nm/rad	0.37	0.88	1.3	2.7	6.1	11
	K ₂	kgfm/arc min	0.11	0.26	0.4	0.8	1.8	3.4
	v	×10 ⁴ Nm/rad	0.47	1.2	2.0	3.7	8.4	15
	K	kgfm/arc min	0.14	0.34	0.6	1.1	2.5	4.5
	_	×10"frad	6.9	5.8	6.4	7.0	6.2	6.1
	θ,	arc min	2.4	2.0	2.2	2.3	2.1	2.1
		×10 ⁻⁴ rad	19	14	19	18	18	18
	θ,	arc min	6.4	4.6	6.3	6.1	6.1	5.9
		×10 ⁴ Nm/rad	0.4	0.84	1.3	2.7	6.1	11
	K.	kgfm/arc min	0.12	0.25	0.4	0.8	1.8	3.2
		×10 ⁴ Nm/rad	0.44	0.94	1.7	3.7	7.8	14
Ratio	K ₂	kgfm/arc min	0.13	0.28	0.5	1.1	2.3	4.2
100 or more K		×10 ⁴ Nm/rad	0.61	1.3	2.5	4.7	11	20
	N	kgfm/arc min	0.18	0.39	0.75	1.4	3.3	5.8
	0	×10 ⁻⁴ rad	5.0	4.6	5.4	5.2	4.8	4.9
	θ,	arc min	1.7	1.6	1.8	1.8	1.7	1.7
		×10 ⁻⁴ rad	16	13	15	13	14	14
	θ2	arc min	5.4	4.3	5.0	4.5	4.8	4.8

^{*} The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

Simplicity unit (2	SH) Starting to	orque	See "Engineering data" for a description of terms. The values are reference values.				
Size		17	20	25	32	40	
50	6.2	19	25	39	60	95	
100	4.8	17	22	34	50	78	
160	8-8	5-2	22	33	47	74	

Simplicity unit	(2SH) Backdrivi	ng torque	See "Engineering	See "Engineering data" for a description of terms. The values are reference values.				
Size		17	20	25	32			
50	3.7	11	15	24	36	57		
100	5.8	21	27	41	60	94		
160	\$ \$	12 7 - 1 2)	42	64	91	143		

Ratcheting torq	Ratcheting torque See "Engineering data" for a description of terms. Table 274 Unit: Nr									
Size	14	17	20	25	32					
50	88	150	220	450	980	1800				
100	84	160	260	500	1000	2100				
160	B 2	5 -1 3	220	450	980	1800				

Buckling torque See "Engineering data" for a description of terms. Table 27 Unit:								
Size		17	20	25	32			
Total reduction ratio	130	260	470	850	1800	3600		

Checking output bearing

A precision cross roller bearing is built in the unit type to directly

support the external load (output flange).

Check the maximum moment load, life of the cross roller bearing

and static safety coefficient to fully bring out the performance of the unit type.

See page 030 to 034 of "Engineering data" for each calculation formula.

■ Checking procedure

(1) Checking the maximum moment load (M max)

Calculate the maximum moment load (Mmax).

Maximum moment load (Mmax) ≤ allowable moment (Mc)

(2) Checking the life

Calculate the average radial load (Frav) and the average axial load (Faav).

Calculate the radial load coefficient (x) and the axial load coefficient (y).

(3) Checking the static safety coefficient

Calculate the static safety coefficient (Po).

Check the static safety coefficient. (fs)

Output bearing specifications

The specifications of the cross roller are shown in Table 280-1.

Specifications Table 280-1

	Pitch circle dia. of a roller	Offset	Basic rated load				Allowable		Moment st	Moment stiffness Km	
	dp	R	Basic dynamic rated load C		Basic static rated load Co		moment load Mc		×10 ⁴ Nm/rad	kgfm/arc min	
	m	m	×10 ² N	kgf	×10 ² N	kgf	Nm	kgfm			
14	0.0503	0.0111	29	296	43	438	37	3.8	7.08	2.1	
17	0.061	0.0115	52	530	81	826	62	6.3	12.7	3.8	
20	0.070	0.011	73	744	110	1122	93	9.5	21	6.2	
25	0.086	0.0121	109	1111	179	1825	129	13.2	31	9.2	
32	0.112	0.0173	191	1948	327	3334	290	29.6	82.1	24.4	
40	0.133	0.0195	216	2203	408	4160	424	43.2	145	43.0	

(Note) * The basic dynamic rated load means a certain static radial load so that the basic dynamic rated life of the roller bearing is one million rotations.

- * The basic static rated load means a static load that gives a certain level of contact stress (4 kN/mm ²) in the center of the contact area between the rolling element receiving the maximum load and the orbit.
- * The value of the moment stiffness is the average value.

(Note) The life of the gear indicates the life (L₁₀=7000 hours) of the wave generator bearing when it operates at 2000rpm input rotational speed and the rated torque (see "Life of the wave generator" on Page 012).

Design Guide -

Installation accuracy

For peak performance of the gear, it is essential that the following tolerances be observed when assembly is complete. Pay careful attention to the following points and maintain the recommended assembly tolerances to avoid grease leakage.

- · Warp and deformation on the mounting surface
- · Blocking of foreign matter
- Problems caused by burrs, raised surfaces and location around the tap area of the mounting holes
- · Insufficient chamfering on the housing mount
- · Insufficient radii on the housing mount

Recommended tolerances for assembly

Case meting face

Recommended shaft tolerance H6 or h6

Recommended sha

Recommended tolerances for assembly

Table 281-1 Unit mm

tolerance h6

Size	14	17	20	25	32	40
а	0.016	0.021	0.027	0.035	0.042	0.048
фЬ	0.015	0.018	0.019	0.022	0.022	0.024
С	0.011	0.012	0.013	0.014	0.016	0.016
d	0.008	0.010	0.012	0.012	0.012	0.012
фе	0.016	0.018	0.019	0.022	0.022	0.024

-69-

^{*} As the life of the cross roller bearing of the unit of the reduction ratio corresponding to the table below (Table 280-2) is shorter than that ^(risto) of the gear during operation under the allowable moment load, consideration should be made in designing the load condition and the lifetime.

图216-1

Circular spline

-72-

Installation and transmission torque

nstallation	and transn	nission torque on	(A) side				Table 282-2
Item	Size	14	17	20	25	32	40
Number of b	oolts	8	12	12	12	12	12
Bolt size		МЗ	М3	М3	M4	M5	M6
Pitch Circle Diameter	mm	64	74	84	102	132	158
Clamp torque	Nm	2.0	2.0	2.0	4.5	9.0	15.3
Transmission	Nm	108	186	210	431	892	1509

- (Notes) 1. The material of the thread must withstand the clamp torque.
 - 2. Recommended bolt: JIS B 1176 socket head cap screw. Strength range: JIS B 1051 over 12.9.

- 3. Torque coefficient: K=0.2
- 4. Tightening coefficient: A=1.4
- 5. Tightening friction coefficient µ=0.15

Installation and transmission torque on (B) side

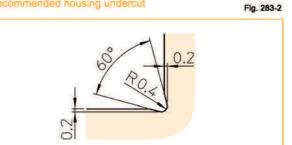
Table 282-3

Item	Size	14	17	20	25	32	40
Number of bo	olts	8	12	12	12	12	12
Bolt size		М3	М3	М3	M4	M5	M6
Pitch Circle Diameter	mm	43	52	61.4	76	99	120
Effective depth of screw part	mm	4.5	4.5	4.5	6	8	9
Clamp torque	Nm	2.0	2.0	2.0	4.5	9.0	15.3
Transmission torque	Nm	72	130	154	321	668	1148

- (Notes) 1. The material of the thread must withstand the clamp torque.
 - 2. Recommended bolt: JIS B 1176 socket head cap screw. Strength range: JIS B 1051 over 12.9.

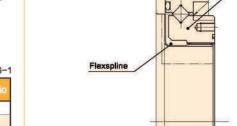
- 3. Torque coefficient: K=0.2
- 4. Tightening coefficient: A=1.4
- 5. Tightening friction coefficient $\mu = 0.15$
- * Since the flange material on the case side is AL (aluminum), be sure to tighten the bolt to the specified torque as described above. If the tightening torque exceeds the above value, the correct transmission torque may not be secured or the bolt may be loosened. Use washers instead of putting the aluminum directly on the bolt-bearing surface when tightening with the bolt from the A side.

Fig. 283-1


Recessing of the mounting pilot

When the housing interferes with corner "A" shown below, an undercut in the housing is recommended.

Mounting pilot



Recommended housing undercut

Output part and fixed part

The output part of SHD series varies from the fixed position. In addition, the reduction ratio and direction of rotation also change, and the relationship is shown in the following figure

表216-1

Fixed part	Output part	Rotary direction and ratio
Flexspline	Circular spline	② on page 9
Circular spline	Flexspline	① on page 9

Lubrication

Standard lubrication for SHD series is grease lubrication. See "Engineering data" on Page 016 for details of the lubricant .

Recommended minimum housing clearance

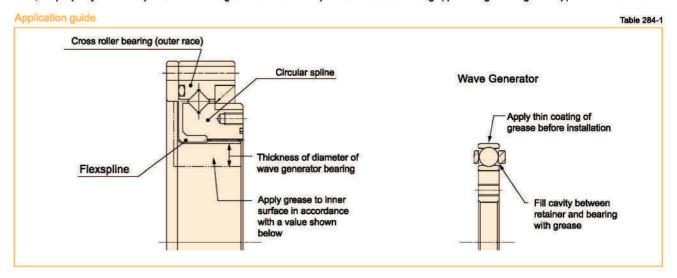
These dimensions must be maintained to prevent damage to the gear and to maintain a proper grease cavity.

Minimum housing clearance

Olima		
Size	2.2	
Complete Com	14	17
SVITIDIO		1.0

Symbol		17	20	25	32	40
фа	36.5	45	53	66	86	106
b	1(3)	1(3)	1.5(4.5)	1.5(4.5)	2(6)	2.5(7.5)
фс	31	38	45	56	73	90
d	1.4	1.8	1.7	1.8	1.8	1.8
е	1.5	1.5	1.5	1.5	3.3	4

(Note) The value in parenthesis is the value when the wave generator is facing upward.


Recommended minimum housing clearance Maximum Length for Installation Counter bore

Application guide

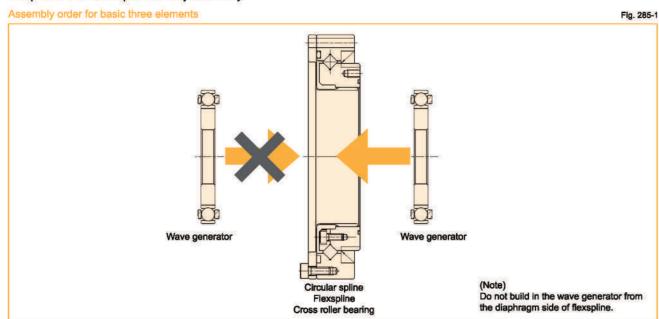
As the SHD series is shipped with the outer race of the cross roller bearing and the flexspline temporarily bolted together, grease is applied to the gear teeth, the periphery of the flexspline and the tooth groove of the circular spline. Refer to the following application guide for grease application instructions.

Table 283-5

Unit: mm

Application quantity

-	1		
	U	nit.	a
		4	. 9


Size	14	17	20	25	32	40
Application qty	5	9	13	24	51	99

-71-

Precautions on installation

Assembly order of the three basic elements

The wave generator is installed after the flexspline and circular spline. If the wave generator is not inserted into the flexspline last, gear teeth scuffing damage or improper eccentric gear mesh may result. Installation resulting in an eccentric tooth mesh (Dedoidal) will cause noise and vibration, and can lead to early failure of the gear. For proper function, the teeth of the flexspline and Circular Spline mesh symmetrically.

Precautions on assembly

It is extremely important to assemble the gear accurately and in proper sequence. For each of the three components, utilize the following precautions.

Wave generator -

- 1. Avoid applying undue axial force to the wave generator during installation. Rotating the wave generator bearing while inserting it is recommended and will ease the process.
- 2. Extra care must be given to ensure that concentricity and inclination are within the specified limits (see page 281).
- 3. Installation bolts on the Wave Generator and Flexspline should not interfere each other.

Circular spline

The circular Spline must not be deformed in any way during the assembly. It is particularly important that the mounting surfaces are prepared correctly.

- 1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
- 2. Especially in the area of the screw holes, burrs or foreign matter should not be present.
- 3. Adequate relief in the housing corners is needed to prevent interference with the corner of the circular spline.
- 4. The circular spline should be rotatable within the housing. Be sure there is not interference and that it does not catch on anything.
- 5. Bolts should not rotate freely when tightening and should not have any irregularity due to the bolt hole being misaligned or
- 6. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them with the specified torque. Tighten them in an even, crisscross pattern.
- 7. Avoid pinning the circular spline if possible as it can reduce the rotational precision and smoothness of operation.

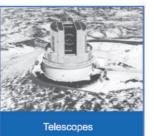
- 1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
- 2. Especially in the area of the screw holes, burrs or foreign matter should not be present.
- 3. Adequate clearance with the housing is needed to ensure no interference especially with the major axis of flexspline
- 4. Bolts should rotate freely when installing through the mounting holes of the flexspline and should not have any irregularity due to the shaft bolt holes being misaligned or oblique.
- 5. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them to the specified torque. Tighten them in an even, crisscross pattern.
- 6. The flexspline and circular spline are concentric after assembly. After installing the wave generator bearing, if it rotates in unbalanced way, check the mounting for dedoidal or non-concentric installation
- 7. Care should be taken not to damage the flexspline diaphragm or gear teeth during assembly.

Avoid hitting the tips of the flexpline teeth and circular spline teeth. Avoid installing the CS from the open side of the flexspline after the wave generator has been installed.

Rust prevention

Although Harmonic Drive® gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.

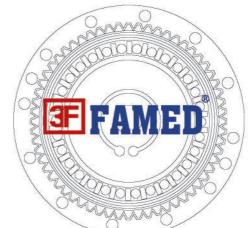
Major Applications of Our Products



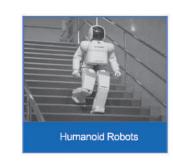

Processing Machines

Measurement, Analytical and st System

Medical Equipments



Space Equipments



-73--74-